**CHANGE NOTICE**

<table>
<thead>
<tr>
<th>Affected Document:</th>
<th>IRN/SCN Number</th>
<th>Date:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Authority:</th>
<th>Proposed Change Notice</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC-00403</td>
<td>PCN-IS-200K_RFC403</td>
<td>18-OCT-2019</td>
</tr>
</tbody>
</table>

CLASSIFIED BY: N/A  
DECLASSIFY ON: N/A

**Document Title:** NAVSTAR GPS Space Segment/Navigation User Interfaces  
**RFC Title:** Health Bit Clarification

**Reason For Change (Driver):**  
The CNAV (L2C and L5) & CNAV-2 (L1C) health summary bits for L1, L2, and L5 are not clearly defined and can be interpreted in multiple ways. There are only 3 bits available to summarize multiple codes and data, so more information is needed to determine the health of each signal.

(Pre-RFC-788)  
Note: Topic was previously introduced in RFC-374 (2018 Public Document Changes)

**Description of Change:**
1. Specify that the L1, L2, and L5 health summary bits apply to the codes and data on the carriers as described in the Signal-in-Space (SIS) documents. Requires fix to message types.
2. Clarify that the health bit indication will be given relative to the capabilities of the SV as designated by the SV Configuration code.
3. Provide a new section to provide guidance to users on how to interpret the various health indicators in SIS documents.
4. Provide SV Configuration on CNAV-2 (L1C) for users

**Authored By:** RE: Jennifer Lemus  
**Checked By:** RE: Anthony Flores

<table>
<thead>
<tr>
<th>AUTHORIZED SIGNATURES</th>
<th>REPRESENTING</th>
<th>DATE</th>
</tr>
</thead>
</table>
|                       | GPS Directorate  
|                       | Space & Missile Systems Center (SMC) – LAAFB |

**DISTRIBUTION STATEMENT A:** Approved For Public Release; Distribution is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES Affected.

Interface Control Contractor:  
SAIC (GPS SE&I)  
200 N. Pacific Coast Highway, Suite 1800  
El Segundo, CA 90245  
CODE IDENT 66RP1
6.4.6.0-1

WAS:
N/A

Redlines:
<INSERTED OBJECT>

IS:
The GPS enterprise provides users with information in multiple ways which indicates the health of each satellite's broadcast signal components. Occasionally, the indications provided one way will conflict with the indications provided another way. The recommended user protocol for interpreting these indications is given below. The Control Segment will manage the GPS constellation assuming this protocol; users should plan accordingly. Users who vary from this protocol assume the responsibility to assess and mitigate any risk that might arise from that variance. The information is presented in the order of a typical acquisition sequence, but once satellites are successfully being tracked, the user should react to changing indications in any order in which they may be received.
1. Constellation Almanac. LNAV almanac users should not attempt to acquire signals that appear to be from dummy satellites as defined via a currently broadcast LNAV almanac (see paragraphs 3.2.1). CNAV almanac users should not attempt to acquire signals that appear to be from satellites for which a CNAV almanac is not currently being broadcast in Message Types 12, 31, and/or 37 (see paragraph 30.3.3.4).

2. SV Configuration Code. Users should not attempt to acquire signals not identified as existing by the broadcast SV configuration code (see paragraph 20.3.3.5.1.4) for a satellite.

3. Signal Alarm Indication. Signals from a satellite that are subject to a signal alarm indication (see paragraph 6.4.6.2) should be ignored.

4. CEI Data Set. Signals from a satellite that are indicated as bad by the CEI data set in use from that satellite should be ignored. See paragraph 6.2.9 for a description of the CEI data set. See paragraph 20.3.3.3.1.4 or 30.3.3.1.1.2 for a description of the CEI data set health settings.

5. Marginal Indication. Signals from a satellite that are indicated as marginal (see paragraph 6.4.6.3) by that satellite may be ignored.

6. Other. Signals from a satellite whose suitability for use are suspect for other valid reasons (e.g., Receiver Autonomous Integrity Monitoring [RAIM]) may be ignored.

Note: Priority of SPS SIS Health Information. Satellite health indications in LNAV subframes 4 and 5 (see paragraphs 30.3.3.5.1.3 and 40.3.3.5.1.3) and CNAV health indications in Message Types 12, 31, and/or 37 (see paragraph 30.3.3.4)
may not be the most recent indications of the health of a satellite. They indicate the health of the satellites in the constellation when the almanac was generated for upload to the satellite from which the almanac was obtained. The current availability and health of a satellite signal should be determined based on the criteria described in items 1-6 above.

---

**IS200-1755**:
Insertion after object IS200-1753

**Section Number** :
6.4.6.2

**WAS** :
N/A

**Redlines** :
<INSERTED OBJECT>

**IS** :
Alarm Indications

---

**IS200-1756**:
Insertion below object IS200-1755

**Section Number** :
6.4.6.2.0-1

**WAS** :
N/A

**Redlines** :
<INSERTED OBJECT>

**IS** :
An otherwise healthy signal-in-space (SIS) signal or marginal SIS signal becomes unhealthy when it is the subject of a SIS alarm indication. The presence of any of the following alarm indications listed below means the information provided by the signal may not be correct.
Common Alarm Indications

The following alarm indications are common to all code signals.
- The code signal becomes untrackable (e.g., ≥ 20 dB decrease in transmitted signal power, ≥ 20 dB increase in correlation loss):
  - (a) The code signal ceases transmission.
  - (b) The elimination of the standard code (e.g., gibberish code).
  - (c) The substitution of non-standard code for the standard code (see paragraph 3.2.1.6)
IS200-1760:
Insertion below object IS200-1759

Section Number:
6.4.6.2.2.0-1

WAS:
N/A

Redlines:
<INSERTED OBJECT>

IS:
The following alarm indications are specific to the code signals listed below.

C/A-Code or P(Y)-Code Signal
(a) The failure of parity on 5 successive words of LNAV data (3 seconds) (see paragraphs 20.3.5 and 40.3.5).
(b) The broadcast IODE does not match the 8 LSBs of the broadcast IODC (excluding normal data set cutovers, see paragraph 20.3.3.4.1).
(c) The transmitted bits in words 3-10 in subframe 1, 2, or 3 are all set to 0's or all set to 1's.
(d) Default LNAV data is being transmitted in subframes 1, 2, or 3 (see paragraph 20.3.2).
(e) The 8-bit preamble does not equal 1001011₂, decimal 139, or hexadecimal 8B (see paragraph 20.3.3).

CM-Code Signal
(a) The failure of the cyclic redundancy check (CRC) on 5 successive CNAV messages (60 seconds) (see paragraph 30.3.5).
(b) The broadcast time of ephemeris (tₑ) is not current (i.e. not within the current curve-fit) or does not match the broadcast time of clock (tₒ) (excluding normal data set cutovers, see paragraphs 30.3.3.1.1 and 30.3.4.4).
(c) The broadcast tₒ is not consistent across the Message Types 10, 11 and Type 30’s messages which comprise the current (i.e. not within the current curve-fit) CEI data set (excluding normal data set cutovers, see paragraph 30.3.4.4).
(d) The transmitted bits (bits 39-276) in Message Types 10, 11 and Type 30’s are all set to 0’s or all set to 1’s.
(e) The 8-bit preamble does not equal 1001011₂, decimal 139, or hexadecimal 8B (see paragraph 30.3.3).

Notes:
1. A SIS alarm indication exists when the satellite is not trackable because it is not transmitting the standard PRN code modulation on the L-band carrier signal. These SIS alarm indications are specifically called out above because of their relatively high probability of occurrence.
2. The SIS alarm indications related to the LNAV and CNAV message data are considered “weak” indications since receivers do not necessarily continuously read each satellite’s LNAV or CNAV message data either by design or by circumstance (e.g., radio-frequency interference [RFI] can prevent reading LNAV or CNAV message data). These weak SIS alarm indications are assumed to have a five-minute lag time before receivers take notice of them for alerting purposes.
3. The SIS alarm indications related to the LNAV or CNAV message data are indicative of a problem onboard the satellite. GPS receivers may perceive similar indications caused by local effects that are unrelated to the broadcast SIS.
4. In addition to SIS alarm indications, other conditions may also cause GPS signals to become temporarily untrackable, such as ionospheric signal fades, local signal masking, or local interference.

---

**IS200-1761:**
Insertion after object IS200-1755

**Section Number:**
6.4.6.3

**WAS:**
N/A

**Redlines:**
<INSERTED OBJECT>

**IS:**
“Marginal” Indications.

---

**IS200-1762:**
Insertion below object IS200-1761

**Section Number:**
6.4.6.3.0-1

**WAS:**
N/A

**Redlines:**
<INSERTED OBJECT>

**IS:**
The C/A-code signal is marginal when the C/A-code signal would otherwise have been defined as healthy except that one or more of the following three warning conditions is or are present:

1. The C/A-code signal indicates that any one of the satellite’s SIS components may not be fully capable. More specifically, the Most Significant Bit (MSB) of the six-bit health status word given in subframe 1 of the LNAV message is set to 02 (“all LNAV data are OK”) and the 5 Least Significant Bits (LSBs) of the six-bit health status word in subframe 1 of the LNAV message are set to anything other than 000002 (all signals are OK), 000102 (all signals dead), or 111002 (“SV is temporarily out”). See paragraphs 20.3.3.3.1.4 and 20.3.3.5.1.3.

2. The URA alert flag is raised (i.e., bit 18 of the LNAV HOW is set to 1) and the URA does not apply. This means the URA may be worse than the URA index value transmitted in subframe 1. See paragraph 20.3.3.2.

3. The transmitted URA index in subframe 1 is equal to 15 ("N"=15). See paragraph 20.3.3.3.1.3.

The health of the CM-code and CL-code signals is marginal when the signals would otherwise have been defined as healthy except that one or more of the following three warning conditions is or are present:

1. Default CNAV data (i.e., Message Type 0) is being transmitted in lieu of Message Type 10, 11 and/or Message Type 30’s on the CM-code signal (e.g., a current and consistent CEI data set is not available within the maximum broadcast interval defined in paragraph 30.3.4.1). See paragraph 30.3.3.
2. The URA alert flag is raised (i.e., bit 38 of each CNAV message is set to 1) and therefore the CM-code signal URA components do not apply to the CM-code and CL-code signals. This means the CM-code and CL-code signal URA may be worse than indicated by the URA index components transmitted in Message Type 10 and Message Type 30’s. See paragraph 30.3.3.

3. Either or both the URAED index in Message Type 10 and the URANED0 index in Message Type 30’s transmitted in the CM-code signal are equal to 15 or -16 ("N”=15 or "N”=-16). See paragraphs 30.3.3.1.4 and 30.3.3.2.4.

The P(Y)-code SIS health is marginal when the P(Y)-code SIS would otherwise have been defined as healthy except that one or more of the following three warning conditions is or are present:

1. The Most Significant Bit (MSB) of the six-bit health status word given in subframe 1 of the LNAV message is set to 0, and the 5 Least Significant Bits (LSBs) of the six-bit health status word in subframe 1 of the LNAV message are set to anything other than 000002 (all signals are OK), 000102 (all signals dead), or 111002 (SV is temporarily out). See paragraphs 20.3.3.3.1.4 and 20.3.3.5.1.3.

2. The URA alert flag transmitted as bit 18 of the HOW is set to 1 and the URA does not apply as defined in ICD-GPS-224 and ICD-GPS-225.

3. The transmitted URA index "N”=15.

IS200-407:

**Section Number**: 20.3.3.5.1.4.0-1

**WAS**: Page 25 of subframe 4 shall contain a four-bit-long term for each of up to 32 SVs to indicate the A-S status and the configuration code of each SV. The MSB of each four-bit term shall be the A-S flag with a "1" indicating that A-S is ON. The three LSBs shall indicate the configuration of each SV using the following code:

<table>
<thead>
<tr>
<th>Code</th>
<th>SV Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Reserved in order to preserve future use of these values in a future revision of this IS. Until such a revision, the User Segment developing to this version of this IS should interpret these values as indicating that no information in this data field is presently usable as a means to identify the actual SV configuration.</td>
</tr>
<tr>
<td>001</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2 (e.g. Block II/IIA/IIR SV).</td>
</tr>
<tr>
<td>010</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code signal capability, L2C signal capability (e.g., Block IIR-M SV).</td>
</tr>
<tr>
<td>011</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, L2C signal capability, L5 signal capability (e.g., Block IIF SV).</td>
</tr>
<tr>
<td>100</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, L1C signal capability, L2C signal capability, L5 signal capability, no SA capability (e.g., GPS III SVs).</td>
</tr>
<tr>
<td>101, 110, 111</td>
<td>Reserved in order to preserve future use of these values in a future revision of this IS. Until such a revision, the User Segment developing to this version of this IS should interpret these values as indicating that no information in this data field is presently usable as a means to identify the actual SV configuration.</td>
</tr>
</tbody>
</table>
Redlines:

Page 25 of subframe 4 shall contain a four-bit-long term for each of up to 32 SVs to indicate the A-S status and the configuration code of each SV. The MSB of each four-bit term shall be the A-S flag with a "1" indicating that A-S is ON. The three LSBs shall indicate the configuration of each SV using the following code:

<table>
<thead>
<tr>
<th>Code</th>
<th>SV Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td><strong>Reserved in order to preserve future use of these values in a future revision of this IS. Until such a revision, the User Segment developing to this version of this IS should interpret these values as indicating that no information in this data field is presently usable as a means to identify the actual SV configuration. No information is available.</strong></td>
</tr>
<tr>
<td>001</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2 (e.g. Block II/Block IIA/IIR SV).</td>
</tr>
<tr>
<td>010</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code signal capability, L2C signal capability (e.g., Block IIR-M SV).</td>
</tr>
<tr>
<td>011</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, L2C signal capability, L5 signal capability (e.g., Block IIF SV).</td>
</tr>
<tr>
<td>100</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, L1C signal capability, L2C signal capability, L5 signal capability, no SA capability (e.g., GPS III SVs).</td>
</tr>
<tr>
<td>101, 110, 111</td>
<td>A-S capability, plus flags for A-S and “alert” in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, Regional Military Protection capability, L1C signal capability, L2C signal capability, L5 signal capability, no SA capability (e.g., GPS IIIF SVs).</td>
</tr>
<tr>
<td>110, 111</td>
<td>Reserved in order to preserve future use of these values in a future revision of this IS. Until such a revision, the User Segment developing to this version of this IS should interpret these values as indicating that no information in this data field is presently usable as a means to identify the actual SV configuration.</td>
</tr>
</tbody>
</table>
IS:
Page 25 of subframe 4 shall contain a four-bit-long term for each of up to 32 SVs to indicate the A-S status and the configuration code of each SV. The MSB of each four-bit term shall be the A-S flag with a “1” indicating that A-S is ON. The three LSBs shall indicate the configuration of each SV using the following code:

<table>
<thead>
<tr>
<th>Code</th>
<th>SV Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>No information is available.</td>
</tr>
<tr>
<td>001</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2 (e.g. Block II/Block IIA/IIR SV).</td>
</tr>
<tr>
<td>010</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code signal capability, L2C signal capability (e.g., Block IIR-M SV).</td>
</tr>
<tr>
<td>011</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, L2C signal capability, L5 signal capability (e.g., Block IIF SV).</td>
</tr>
<tr>
<td>100</td>
<td>A-S capability, plus flags for A-S and &quot;alert&quot; in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, L1C signal capability, L2C signal capability, L5 signal capability, no SA capability (e.g., GPS III SVs).</td>
</tr>
<tr>
<td>101</td>
<td>A-S capability, plus flags for A-S and “alert” in HOW; memory capacity as described in paragraph 20.3.2, M-code capability, Regional Military Protection capability, L1C signal capability, L2C signal capability, L5 signal capability, no SA capability (e.g., GPS IIF SVs).</td>
</tr>
<tr>
<td>110, 111</td>
<td>Reserved in order to preserve future use of these values in a future revision of this IS. Until such a revision, the User Segment developing to this version of this IS should interpret these values as indicating that no information in this data field is presently usable as a means to identify the actual SV configuration.</td>
</tr>
</tbody>
</table>

IS200-510:

Section Number:
30.3.1.0-1

WAS:
The CNAV data, D_C(t), is a higher precision representation and nominally contains more accurate data than the LNAV data, D(t), described in Appendix II. Also, the CNAV data stream uses a different parity algorithm.

Redlines:
The CEI data set provided in the CNAV data, D_C(t), is a higher precision representation and nominally contains more accurate data than the CEI data set provided in the LNAV data, D(t), described in Appendices II and IV. Also, the CNAV data stream uses a different parity algorithm.

IS:
The CEI data set provided in the CNAV data, D_C(t), is a higher precision representation and nominally contains more accurate data than the CEI data set provided in the LNAV data, D(t), described in Appendices II and IV. Also, the CNAV data stream uses a different parity algorithm.
Users are advised that the CNAV data, $D_C(t)$, described in this appendix and the LNAV data, $D(t)$, described in Appendix II, should not be mixed in any user algorithms or applications. Each of the two data sets should be treated as a set and used accordingly.

Users are advised that the CEI data sets provided in the CNAV data, $D_C(t)$, described in this appendix and the CEI data sets provided in the LNAV data, $D(t)$, described in Appendices II and IV, should not be mixed in any user algorithms or applications. Each of the two data sets should be treated as a set and used accordingly.
The three, one-bit, health indication in bits 52 through 54 of Message Type 10 refers to the L1, L2, and L5 signals of the transmitting SV. The health of each signal is indicated by:

0 = Signal OK,
1 = Signal bad or unavailable.

Redlines:
The three, one-bit, health indication in bits 52 through 54 of Message Type 10 refers to the L1, L2, and L5 signals of the transmitting SV. These health indication bits only apply to codes and data as defined in IS-GPS-200, IS-GPS-705, and IS-GPS-800. The health of each signal is indicated by:

0 = Signal Some or all codes and data on this carrier are OK,
1 = Signal All codes and data on this carrier are bad or unavailable.

IS:
The three, one-bit, health indication in bits 52 through 54 of Message Type 10 refers to the L1, L2, and L5 carrier of the transmitting SV. These health indication bits only apply to codes and data as defined in IS-GPS-200, IS-GPS-705, and IS-GPS-800. The health of each carrier is indicated by:

0 = Some or all codes and data on this carrier are OK,
1 = All codes and data on this carrier are bad or unavailable.
WAS:
The predicted health data will be updated at the time of upload when a new CEI data set has been built by the CS. The transmitted health data may not correspond to the actual health of the transmitting SV.

Redlines:
The health bit indication shall be given relative to the capabilities of each SV as designated by the configuration code in the LNAV message (see paragraph 20.3.3.5.1.4). Accordingly, the health bit for any SV which does not have a certain capability will be indicated as “healthy” if the lack of this capability is inherent in its design or if it has been configured into a mode which is normal from a user standpoint and does not require that capability; however, the Operating Command may choose to set the health bit “unhealthy” for an SV without a certain capability. Single-frequency L2C users or users who have not received or choose not to use configuration code should assume that every signal is available on every SV. The predicted health data will be updated at the time of upload when a new CEI data set has been built by the CS. Therefore, the transmitted health data may not correspond to the actual health of the transmitting SV. For more information about user protocol for interpreting health indications see paragraph 6.4.6.

IS:
The health bit indication shall be given relative to the capabilities of each SV as designated by the configuration code in the LNAV message (see paragraph 20.3.3.5.1.4). Accordingly, the health bit for any SV which does not have a certain capability will be indicated as “healthy” if the lack of this capability is inherent in its design or if it has been configured into a mode which is normal from a user standpoint and does not require that capability; however, the Operating Command may choose to set the health bit “unhealthy” for an SV without a certain capability. Single-frequency L2C users or users who have not received or choose not to use configuration code should assume that every signal is available on every SV. The predicted health data will be updated at the time of upload when a new CEI data set has been built by the CS. Therefore, the transmitted health data may not correspond to the actual health of the transmitting SV. For more information about user protocol for interpreting health indications see paragraph 6.4.6.
Section Number:
30.3.3.4.4.0-1

WAS:
The three, one-bit, health indication in bits 155, 156, and 157 of Message Type 37 and bits 29, 30 and 31 of each packet of reduced almanac refers to the L1, L2, and L5 signals of the SV whose PRN number is specified in the message or in the packet. For each health indicator, a “0” signifies that all signals on the associated frequency are okay and “1” signifies that some or all signals on the associated frequency are bad. The predicted health data will be updated at the time of upload when a new midi almanac or reduced almanac has been built by the CS. The transmitted health data may not correspond to the actual health of the transmitting SV or other SVs in the constellation.

Redlines:
The three, one-bit, health indication in bits 155, 156, and 157 of Message Type 37 and bits 29, 30 and 31 of each packet of reduced almanac refers to the L1, L2, and L5 signals of the SV whose PRN number is specified in the message or in the packet. These health indication bits only apply to codes and data as defined in IS-GPS-200, IS-GPS-705, and IS-GPS-800.

The health indicator for each signal carrier is indicated by:

- 0 means all codes and data associated with this carrier are healthy,
- 1 means all codes and data associated with this carrier are bad or unavailable.

The health indication shall be given relative to the associated frequency of each SV as designated by the configuration code in the LNAV message (see paragraph 20.3.3.5.1.4). Accordingly, the health bit for any SV which does not have a certain capability will be indicated as “healthy” if the lack of this capability is inherent in its design or if it has been configured into a mode which is normal from a user standpoint and does not require that capability; however, the Operating Command may choose to set the health bit “unhealthy” for an SV without a certain capability. Single-frequency L2C users or users who have not received or choose not to use configuration code should assume that every signal is available on every SV. The predicted health data will be updated at the time of upload when a new midi almanac or reduced data set has been built by the CS. Therefore, the transmitted health data may not correspond to the actual health of the transmitting SV, or for other SVs in the constellation. Protocol for interpreting health indications see paragraph 6.4.6.
The three, one-bit, health indication in bits 155, 156, and 157 of Message Type 37 and bits 29, 30 and 31 of each packet of reduced almanac refers to the L1, L2, and L5 carrier of the SV whose PRN number is specified in the message or in the packet. These health indication bits only apply to codes and data as defined in IS-GPS-200, IS-GPS-705, and IS-GPS-800.

The health of each carrier is indicated by:

0 = Some or all codes and data on this carrier are OK,

1 = All codes and data on this carrier are bad or unavailable.

The health bit indication shall be given relative to the capabilities of each SV as designated by the configuration code in the LNAV message (see paragraph 20.3.3.5.1.4). Accordingly, the health bit for any SV which does not have a certain capability will be indicated as “healthy” if the lack of this capability is inherent in its design or if it has been configured into a mode which is normal from a user standpoint and does not require that capability; however, the Operating Command may choose to set the health bit “unhealthy” for an SV without a certain capability. Single-frequency L2C users or users who have not received or choose not to use configuration code should assume that every signal is available on every SV. The predicted health data will be updated at the time of upload when a new CEI data set has been built by the CS. Therefore, the transmitted health data may not correspond to the actual health of the transmitting SV. For more information about user protocol for interpreting health indications see paragraph 6.4.6.