AUTHORITY	**DESCRIPTION**	**DATE**
N/A | Incorporation of IRN-ICD-240B-001 | 4-MAR-2019

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution is Unlimited

APPROVALS

AUTHORED BY: RE Philip Kwan **CHECKED BY:** RE Anthony Flores

AUTHORIZED SIGNATURES

<table>
<thead>
<tr>
<th>REPRESENTING</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS Directorate</td>
<td>6MPA419</td>
</tr>
<tr>
<td>Space & Missile Systems Center (SMC) - LAAFB</td>
<td></td>
</tr>
<tr>
<td>HQ Air Force Space Command (AFSPC/50 OG)</td>
<td></td>
</tr>
<tr>
<td>Department of Homeland Security (DHS), United States Coast Guard (USCG), Navigation Center (NAVacen)</td>
<td></td>
</tr>
</tbody>
</table>

INTERFACE CONTROL DOCUMENT

Interface Control Contractor:

SAIC (GPS SE&I)

200 N. Pacific Coast Highway, Suite 1800

El Segundo, CA 90245

TITLE:

Navstar GPS Control Segment to User Support Community Interfaces

SIZE A **CODE IDENT** **ICD NO.**

66RP1 **REV:** C ICD-GPS-240

SCALE: N/A

UNLESS OTHERWISE SPECIFIED: NUMBERS ARE REPRESENTED IN DECIMAL FORM.

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREBIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED.
AUTHORITY

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorporation of IRN-ICD-240B-001</td>
<td>4-MAR-2019</td>
</tr>
</tbody>
</table>

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution is Unlimited

APPROVALS

Authored By: RE Philip Kwan
Checked By: RE Anthony Flores

<table>
<thead>
<tr>
<th>AUTHORIZED SIGNATURES</th>
<th>REPRESENTING</th>
<th>DATE</th>
</tr>
</thead>
</table>
| Adam Edwards | GPS Directorate
Space & Missile Systems Center (SMC) - LAAFB | |
| Department of Homeland Security (DHS),
United States Coast Guard (USCG),
Navigation Center (NAVCEN) |
HQ Air Force Space Command
(AFSPC/50 OG) | 2 May 19 |

INTERFACE CONTROL DOCUMENT

Interface Control Contractor:
SAIC (GPS SE&I)
200 N. Pacific Coast Highway, Suite 1800
El Segundo, CA 90245

TITLE: Navstar GPS Control Segment to User Support Community Interfaces

<table>
<thead>
<tr>
<th>SIZE A</th>
<th>CODE IDENT</th>
<th>ICD NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66RP1</td>
<td>ICD-GPS-240</td>
</tr>
</tbody>
</table>

SCALE: N/A
REV.: C
<table>
<thead>
<tr>
<th>AUTHORITY</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Incorporation of IRN-ICD-240B-001</td>
<td>4-MAR-2019</td>
</tr>
</tbody>
</table>

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution is Unlimited

APPROVALS

Authored By: RE Philip Kwan
Checked By: RE Anthony Flores

<table>
<thead>
<tr>
<th>AUTHORIZED SIGNATURES</th>
<th>REPRESENTING</th>
<th>DATE</th>
</tr>
</thead>
</table>
| GLANDER, MICHAEL | GPS Directorate
Space & Missile Systems Center (SMC) - LAAFE | |
| WILLIAM, 1015659102 | HQ Air Force Space Command
(AFSPC/50 OG) | |
| | Department of Homeland Security (DHS),
United States Coast Guard (USCG),
Navigation Center (NAVCEN) | |

INTERFACE CONTROL DOCUMENT

UNLESS OTHERWISE SPECIFIED: NUMBERS ARE REPRESENTED IN DECIMAL FORM.

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED

Interface Control Contractor:
SAIC (GPS SE&I)
200 N. Pacific Coast Highway, Suite 1800
El Segundo, CA 90245

TITLE:
Navstar GPS Control Segment to User Support Community Interfaces

<table>
<thead>
<tr>
<th>SIZE A</th>
<th>CODE IDENT</th>
<th>ICD NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>66RP1</td>
<td></td>
<td>ICD-GPS-240</td>
</tr>
</tbody>
</table>

SCALE: N/A
REV: C
<table>
<thead>
<tr>
<th>LTR</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Revision A - Bring ICD content up-to-date to reflect as-built conditions for OCS/AEP era. Added new NANU terms that were approved by 2 SOPS.</td>
<td>27 Oct 2009</td>
<td>12 Jan 2010</td>
</tr>
<tr>
<td></td>
<td>Up Rev Release</td>
<td>25 Apr 2018</td>
<td>22 May 2018</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1 SCOPE ... 1
 1.1 Scope ... 1
 1.2 Key Dates .. 1
 1.3 ICD Approval and Changes .. 1

2 APPLICABLE DOCUMENTS ... 3
 2.1 Government Documents ... 3
 2.2 Non-Government Documents ... 4

3 REQUIREMENTS ... 5
 3.1 Interface Identification .. 5
 3.2 Interface Definitions ... 5
 3.2.1 Almanac Interface between the GPS CS and the GUSS Offline Tool .. 6
 3.2.2 Interfaces between the GPS CS and the USCG NAVCEN ... 7
 3.2.2.1 NAVCEN NANU Interface .. 7
 3.2.2.2 NAVCEN OA Interface .. 7
 3.2.2.3 Satellite Outage File (SOF) ... 7
 3.2.2.4 NAVCEN Almanac Interface ... 8
 3.2.3 Interfaces between the GPS CS and the Military User Community .. 8
 3.2.3.1 Military User Community Internet NANU, OA, SOF and Almanac Interfaces 8
 3.2.3.2 Military User Community SIPRNET NANU, OA, SOF and Almanac Interfaces 8

4 QUALITY ASSURANCE ... 9

5 PREPARATION FOR DELIVERY .. 10

6 NOTES ... 11
 6.1 Acronyms and Abbreviations ... 11

7 APPROVAL .. 14

10 APPENDIX 1: NANU DATA FORMATS .. 15
10.1 Notice Advisory to Navstar Users ... 15
 10.1.1 Scheduled Outages.. 15
 10.1.2 Unscheduled Outages... 16
 10.1.3 General NANU Messages .. 17
 10.1.4 Other Messages .. 17
10.2 NANU Notification Times ... 19
10.3 NANU Message Format .. 20
 10.3.1 NANU Header ... 20
 10.3.2 NANU Section One .. 21
 10.3.2.1 NANU Message Description .. 21
 10.3.2.2 NANU Reference Information .. 21
 10.3.2.3 Satellite Identification .. 21
 10.3.2.4 Outage Time ... 22
 10.3.3 NANU Section Two ... 22
 10.3.4 NANU Section Three .. 23

20 APPENDIX 2: OPERATIONAL ADVISORY .. 24
 20.1 Operational Advisory ... 24
 20.2 OA Header ... 25
 20.3 OA Section One ... 25
 20.4 OA Section Two .. 26
 20.5 OA Section Three ... 26

30 APPENDIX 3: SATELLITE OUTAGE FILE (SOF) ... 27

40 APPENDIX 4: ALMANAC DATA FILES ... 34
 40.1 Almanac Description ... 34
 40.2 SEM Almanac Parameters Definition ... 34
 40.3 SV Health Word .. 34
40.4 SEM Almanac Format .. 34

40.5 YUMA Almanac ... 37

50 APPENDIX 5: LETTERS OF EXCEPTION ... 38

50.1 Scope... 38

50.2 Applicable Documents.. 38

50.3 Letters of Exception.. 38
LIST OF TABLES

Table I Information Exchange Matrix ... 5
Table 10-I Scheduled Outages ... 16
Table 10-II Unscheduled Outages ... 16
Table 10-III Other Types of NANU Messages .. 18
Table 10-IV NANU Notification Times .. 19
Table 40-I Almanac Health .. 34
Table 40-II Almanac Description (Sheet 1 of 2) ... 35
Table 40-II Almanac Description (Sheet 2 of 2) ... 36
Table 50-I Letter of Exception ... 39
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>GPS CS to GUSS Interface</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>GPS CS to USCG NAVCEN Interface</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>GPS CS to Military User Community Interface</td>
<td>8</td>
</tr>
<tr>
<td>Figure 10-1</td>
<td>General Message Format</td>
<td>17</td>
</tr>
<tr>
<td>Figure 10-2</td>
<td>LAUNCH NANU Message Template</td>
<td>18</td>
</tr>
<tr>
<td>Figure 10-3</td>
<td>DECOM NANU Message Template</td>
<td>19</td>
</tr>
<tr>
<td>Figure 10-4</td>
<td>NANU Message Template</td>
<td>20</td>
</tr>
<tr>
<td>Figure 10-5</td>
<td>NANU Header Example</td>
<td>20</td>
</tr>
<tr>
<td>Figure 10-6</td>
<td>Message Description Example</td>
<td>21</td>
</tr>
<tr>
<td>Figure 10-7</td>
<td>Reference Information Example</td>
<td>21</td>
</tr>
<tr>
<td>Figure 10-8</td>
<td>Satellite Identification Information Example</td>
<td>22</td>
</tr>
<tr>
<td>Figure 10-9</td>
<td>Outage Time Example</td>
<td>22</td>
</tr>
<tr>
<td>Figure 10-10</td>
<td>NANU Section 2 Example</td>
<td>22</td>
</tr>
<tr>
<td>Figure 10-11</td>
<td>Contact Information</td>
<td>23</td>
</tr>
<tr>
<td>Figure 20-1</td>
<td>Sample Operational Advisory</td>
<td>24</td>
</tr>
<tr>
<td>Figure 20-2</td>
<td>OA Header</td>
<td>25</td>
</tr>
<tr>
<td>Figure 20-3</td>
<td>OA Section One</td>
<td>25</td>
</tr>
<tr>
<td>Figure 20-3a</td>
<td>OA Section One (No Data)</td>
<td>25</td>
</tr>
<tr>
<td>Figure 20-4</td>
<td>OA Section Two</td>
<td>26</td>
</tr>
<tr>
<td>Figure 20-5</td>
<td>OA Section Three</td>
<td>26</td>
</tr>
<tr>
<td>Figure 40-1</td>
<td>SEM Data Sample</td>
<td>34</td>
</tr>
<tr>
<td>Figure 40-2</td>
<td>YUMA Almanac Data Sample</td>
<td>37</td>
</tr>
</tbody>
</table>
1 SCOPE

1.1 Scope

This Interface Control Document (ICD) defines the following Global Positioning System (GPS) automated interfaces that serve the GPS user and user-support communities during the Operational Control System (OCS)/Architecture Evolution Plan (AEP) systems era:

The functional data transfer interface between the GPS Control Segment (CS) and the GPS User Support Software (GUSS) offline tool.

The physical data transfer interface between the GPS CS and the Schriever Air Force Base (AFB) local area network (LAN) on which the GUSS offline tool resides.

The functional data transfer interfaces between the CS and the United States Coast Guard (USCG) Navigation Center (NAVCEN). These interfaces support the Memorandum of Agreement (MOA) between the Department of Defense (DoD) Joint Functional Component Command for Space (JFCC SPACE); the Department of Homeland Security (DHS) U.S. Coast Guard Navigation Center (NAVCEN); and the Department of Transportation (DOT) Federal Aviation Administration (FAA) National Operations Control Center (NOCC), “Interagency Memorandum of Agreement with Respect to Support of Users of the Navstar Global Positioning System (GPS).”

The functional data transfer interfaces between the CS and the military user community.

This ICD identifies the data transfer requirements for these interfaces. The GUSS software tool is functionally a part of the CS, but resides on hardware that is physically outside the CS. Therefore the functional and physical interfaces between the CS and the GUSS tool are described in this ICD at the physical boundary of the CS. The interfaces between the GPS CS and the NAVCEN and the GPS CS and the military user community are implemented using electronic mail (e-mail), internet and SIPRNET. These interfaces are described only at the functional (application) level in this ICD. This ICD does not include detailed technical descriptions of the e-mail system, internet or SIPRNET.

1.2 Key Dates

None

1.3 ICD Approval and Changes

The Interface Control Contractor (ICC), designated by the government, is responsible for the basic preparation, approval, distribution, and retention of the ICD in accordance with the Interface Control Working Group (ICWG) charter GP-03-001.
The following signatories must approve this ICD to make it effective.

- United States Air Force (USAF), Space Command (AFSPC), GPS Wing (GPSW) Space and Missile Systems Center (SMC)

- USAF, AFSPC, 50th Space Wing (50 SW)

- United States Coast Guard (USCG), Navigation Center (NAVCEN)

Initial signature approval of this ICD can be contingent upon a letter of exception delineating those items by paragraph numbers that are not a part of the approval. Such letter of exception can be prepared by any of the signatories and must be furnished to the ICC for inclusion in the printed distribution of the officially released version of the ICD.

Changes to the approved version of this ICD can be initiated by any of the signatories and must be approved by all above signatories. The ICC is responsible for the preparation of the change pages, change coordination, and the change approval by all signatories. Designated signatories can approve proposed changes to this ICD without any increase in the scope of a specific contract by so specifying in a letter of exception. Such letters of exception must be furnished to the ICC for inclusion in the released version of the approved change and in the printed distribution of the approved ICD.

Whenever all of the issues addressed by a letter of exception are resolved, the respective signatory shall so advise the ICC in writing. When a portion of the exceptions taken by a signatory are resolved (but not all), the signatory shall provide the ICC with an updated letter of exception. Based on such notifications -- without processing a proposed interface revision notice (PIRN) for approval -- the ICC will omit the obsolete letter of exception from the next revision of the ICD and will substitute the new one (if required).

The typical review cycle for a PIRN is 45 days after receipt by individual addressees unless a written request for a waiver is submitted to the ICC.
2 APPLICABLE DOCUMENTS

2.1 Government Documents

The following documents of the issue specified contribute to the definition of the interfaces in this ICD and form a part of this ICD to the extent specified herein.

Specifications

Federal

None

Military

None

Other Government Activity

None

Standards

Federal

None

Military

None

Other Publications

<table>
<thead>
<tr>
<th>IS-GPS-200</th>
<th>IS-GPS-200 Current Version</th>
<th>IS-GPS-200 Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP-03-001</td>
<td>GP-03-001 Current Version</td>
<td>GP-03-001 Description</td>
</tr>
<tr>
<td>MOA</td>
<td>MOA Current Version</td>
<td>MOA Description</td>
</tr>
</tbody>
</table>

Navstar GPS Space Segment/Navigation User Interface

GPS Interface Control Working Group (ICWG) Charter

Interagency Memorandum of Agreement with Respect to Support of Users of the Navstar Global Positioning System (GPS)
2.2 Non-Government Documents

The following documents of the issue specified contribute to the definition of the interfaces in this ICD and form a part of this ICD to the extent specified herein.

Specifications

None

Standards

None

Other Publications

None
3 REQUIREMENTS

3.1 Interface Identification

The interfaces defined in this ICD are listed in Table I, in the form of an information exchange matrix.

<table>
<thead>
<tr>
<th>Producer</th>
<th>Consumer</th>
<th>Data Exchange Identification</th>
<th>Information Description</th>
<th>Nature of Transaction</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS CS</td>
<td>GUSS Offline Software Tool</td>
<td>GPS Constellation Orbital and Performance Parameters</td>
<td>Almanac</td>
<td>Transfer via diskette</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>USCG NAVCEN</td>
<td>GPS Status Information</td>
<td>NANU</td>
<td>Transmit via E-Mail</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>USCG NAVCEN</td>
<td>GPS Constellation Status Summary</td>
<td>OA</td>
<td>Post to Internet Website</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>USCG NAVCEN</td>
<td>GPS Constellation Orbital and Performance Parameters</td>
<td>Almanac</td>
<td>Post to Internet Website</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>USCG NAVCEN</td>
<td>GPS Status Information</td>
<td>Satellite Outage File</td>
<td>Post to Internet Website</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>Military User Community</td>
<td>GPS Status Information</td>
<td>NANU</td>
<td>Post to Internet and SIPRNET Websites</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>Military User Community</td>
<td>GPS Constellation Status Summary</td>
<td>OA</td>
<td>Post to Internet and SIPRNET Websites</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>Military User Community</td>
<td>GPS Constellation Orbital and Performance Parameters</td>
<td>Almanac</td>
<td>Post to Internet and SIPRNET Websites</td>
<td>Unclassified</td>
</tr>
<tr>
<td>GPS CS</td>
<td>Military User Community</td>
<td>GPS Status Information</td>
<td>Satellite Outage File</td>
<td>Post to Internet and SIPRNET Websites</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

The information distributed by the CS includes Notice Advisory to Navstar Users (NANU), Operational Advisory (OA), Satellite Outage File (SOF) and satellite almanac. The NANU is a message that informs users of satellite outages and other GPS issues. The OA is a descriptive summary of GPS constellation status. The SOF is a machine readable format of GPS satellite outage information. The satellite almanac contains orbital and performance parameters for operational GPS satellites. The primary means of data distribution include electronic mail (e-mail) and Internet and SIPRNET websites. All data transfer described in this ICD is unclassified.

3.2 Interface Definitions

The following paragraphs define the physical interface between the CS and the Schriever AFB LAN on which the GUSS offline software tool resides. The following paragraphs also describe the functional interfaces between the CS and the GUSS tool, USCG NAVCEN, and the military user community.

Unless otherwise specified in the paragraphs below, e-mail used for data transfer is generated and transmitted using resources of the Schriever AFB LAN. Internet website hosting, uploads, and downloads are also
accomplished using resources of the Schriever AFB LAN. SIPRNET website hosting, uploads, and downloads are accomplished using resources of the Peterson AFB LAN. The hardware and software interfaces of the internet and these LAN’s are not controlled by this ICD. Therefore, these interfaces are described at the functional (application) level only in this ICD.

The address of the 2 SOPS internet website, Constellation Status Page, referenced in the subsequent subsections is https://gps.afspc.af.mil/gps/. The address of the GPS Operations Center (GPSOC) internet website referenced in the subsequent subsections is http://gps.afspc.af.mil/gpsoc/. The address of the GPS Operations Center SIPRNET website referenced in the subsequent subsections is distributed separately to authorized military users and, therefore, not listed in this ICD.

Detailed data formats of the NANU, OA, SOF and almanac data that are referenced in the paragraphs below are described in Appendices 1, 2, 3 and 4 of this ICD, respectively.

3.2.1 Almanac Interface between the GPS CS and the GUSS Offline Tool

Almanac data from the legacy CS are transferred to the GUSS via a 3.5-inch, high-density, 1.44 megabyte, International Business Machines Corporation (IBM) personal computer (PC) format diskette. The diskette contains one current System Effectiveness Model (SEM) format almanac and one current YUMA format almanac downloaded from the CS Almanac computer. The files are downloaded in the Windows® PC file format. (Windows is a registered trademark of the Microsoft Corporation.) The filename assigned to the SEM almanac is current.al3. The filename assigned to the YUMA almanac is current.alm. The files are downloaded to the diskette using a secure copy program to assure no classified data is transferred to the diskette. The files are uploaded to the GUSS software tool using a Windows®-compatible computer connected to the Schriever AFB LAN. The files are normally transferred from the CS to the GUSS once per day, prior to 1700 Zulu time (10 am Mountain Standard Time (MST), 11 am Mountain Daylight Time (MDT)).

The interface between the GPS CS and the GUSS Offline Tool is shown in Figure 1.
3.2.2 Interfaces between the GPS CS and the USCG NAVCEN

The interface between the GPS CS and the USCG NAVCEN is shown in Figure 2.

![Figure 2 GPS CS to USCG NAVCEN Interface](image)

3.2.2.1 NAVCEN NANU Interface

NANU messages are transmitted to the USCG NAVCEN via e-mail from the CS to an e-mail address provided by the NAVCEN. NANU products from 2SOPS are also received via automated processes that link back to the 2SOPS internet website (https://gps.afspc.af.mil/gps/archive/). The NANUs are transmitted in a tabular format described in Appendix 1. NANU messages are transmitted whenever they are generated (intermittently) including weekends and holidays. Circumstances that may initiate the generation and transmission of specific NANUs are described in Appendix 1. The NANU file is named current.nnu, which is a running list of NANUs.

3.2.2.2 NAVCEN OA Interface

OAs are distributed as a data file via the 2 SOPS internet website. An OA data file is normally uploaded to the 2 SOPS internet website once per day via file transfer protocol (FTP), prior to 1700 Zulu time (10 am MST, 11 am MDT). OA data files are identified with a file name consisting of the Julian day they were generated and a “.oa1” extension, e.g., 123.oa1. The NAVCEN can access the 2 SOPS internet website and download the data file, as required, via FTP.

3.2.2.3 Satellite Outage File (SOF)

The Satellite Outage File (SOF) is built by the GPSOC GPSIS (GPS Information Service) to provide a complete and up-to-date statement of past, current, and forecasted satellite outages in the GPS constellation. The information contained in the SOF is based solely on NANUs supplied by the 2 SOPS. It only applies to the GPS satellites managed by the US Air Force, and thus does not reflect status of augmentation satellites, such as those in the WAAS and EGNOS constellations. SOF data is updated and posted to GPSOC GPSIS web sites whenever the GPSOC issues a Notice: Advisory to Navstar Users (NANU).
3.2.2.4 NAVCEN Almanac Interface

Almanacs are distributed as YUMA- and SEM-format data files via the 2 SOPS internet website. Almanac data files are normally uploaded to the 2 SOPS internet website once per day, prior to 1700 Zulu time (10 am MST, 11 am MDT). YUMA-format almanac data files are identified with an “.alm” extension. SEM-format almanac data files are identified with an “.al3” extension. The NAVCEN can access the 2 SOPS internet website and download the data file, as required, via FTP.

3.2.3 Interfaces between the GPS CS and the Military User Community

The interface between the GPS CS and the Military User Community is shown in Figure 3.

![Figure 3 GPS CS to Military User Community Interface](image)

3.2.3.1 Military User Community Internet NANU, OA, SOF and Almanac Interfaces

NANUs, OAs, SOFs and almanacs are distributed to the Military user community over the internet by uploading NANU, OA, SOF and almanac files to the 2 SOPS internet website. Military users with internet connectivity can access the 2 SOPS internet website directly or via a direct page-to-page hyperlink from the GPS Operations Center (GPSOC) internet website to the 2 SOPS internet website. Files are downloaded from the 2 SOPS internet website using FTP by selecting a hyperlink to the desired NANU, OA, SOF or almanac file.

3.2.3.2 Military User Community SIPRNET NANU, OA, SOF and Almanac Interfaces

NANUs, OAs, SOF and almanacs are distributed to the Military user community over the SIPRNET by uploading NANU, OA, SOF and almanac files to the GPSOC SIPRNET website. Military users with SIPRNET connectivity can download a NANU, OA, SOF or almanac file using FTP by selecting the corresponding hyperlink.
4 QUALITY ASSURANCE

Not Applicable
5 PREPARATION FOR DELIVERY

Not Applicable
6 NOTES

6.1 Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SOPS</td>
<td>2nd Space Operations Squadron</td>
</tr>
<tr>
<td>50 SW</td>
<td>50th Space Wing</td>
</tr>
<tr>
<td>AEP</td>
<td>Architecture Evolution Plan</td>
</tr>
<tr>
<td>AF</td>
<td>Air Force</td>
</tr>
<tr>
<td>AFB</td>
<td>Air Force Base</td>
</tr>
<tr>
<td>AFSPC</td>
<td>Air Force Space Command</td>
</tr>
<tr>
<td>ANOM</td>
<td>Anomaly</td>
</tr>
<tr>
<td>ASCEN</td>
<td>Ascension</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>COMM</td>
<td>Commercial</td>
</tr>
<tr>
<td>CS</td>
<td>Control Segment, Cesium</td>
</tr>
<tr>
<td>DSN</td>
<td>Defense Switched Network</td>
</tr>
<tr>
<td>DTG</td>
<td>Day Time Group</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPSOC</td>
<td>GPS Operations Center</td>
</tr>
<tr>
<td>GUSS</td>
<td>GPS User Support Software</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>ICC</td>
<td>Interface Control Contractor</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Document</td>
</tr>
<tr>
<td>ICWG</td>
<td>Interface Control Working Group</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>JDAY</td>
<td>Julian Day of the Year</td>
</tr>
<tr>
<td>JPO</td>
<td>Joint Program Office</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>LLC</td>
<td>Limited Liability Company</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>m</td>
<td>Meters</td>
</tr>
<tr>
<td>MDT</td>
<td>Mountain Daylight Time</td>
</tr>
<tr>
<td>MOA</td>
<td>Memorandum of Agreement</td>
</tr>
<tr>
<td>MSG</td>
<td>Message</td>
</tr>
<tr>
<td>MST</td>
<td>Mountain Standard Time</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NANU</td>
<td>Notice Advisory to Navstar Users</td>
</tr>
<tr>
<td>NAV</td>
<td>Navigation</td>
</tr>
<tr>
<td>NAVCEN</td>
<td>Navigation Center</td>
</tr>
<tr>
<td>NC</td>
<td>No Change</td>
</tr>
<tr>
<td>OA</td>
<td>Operational Advisory</td>
</tr>
<tr>
<td>OCS</td>
<td>Operational Control System</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PIRN</td>
<td>Proposed Interface Revision Notice</td>
</tr>
<tr>
<td>PRN</td>
<td>Pseudorandom Noise (Signal Number)</td>
</tr>
<tr>
<td>POC</td>
<td>Point Of Contact</td>
</tr>
<tr>
<td>RB</td>
<td>Rubidium</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>SEM</td>
<td>System Effectiveness Model</td>
</tr>
<tr>
<td>SIPRNET</td>
<td>Secret Internet Protocol Router Network</td>
</tr>
<tr>
<td>SMC</td>
<td>Space and Missile Systems Center</td>
</tr>
<tr>
<td>SQRT</td>
<td>Square Root</td>
</tr>
<tr>
<td>SUBJ</td>
<td>Subject</td>
</tr>
<tr>
<td>SV</td>
<td>Space Vehicle</td>
</tr>
<tr>
<td>SVN</td>
<td>Space Vehicle Number</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
</tr>
<tr>
<td>URA</td>
<td>User Range Accuracy</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USCG</td>
<td>United States Coast Guard</td>
</tr>
</tbody>
</table>
7 APPROVAL
The signatories have approved this ICD with or without exception as their signature block implies and a copy of each approval sheet is included in this section.
10 APPENDIX 1: NANU DATA FORMATS

10.1 Notice Advisory to Navstar Users

NANUs are used to notify users of scheduled and unscheduled satellite outages and general GPS information. The paragraphs that follow describe the different types of NANUs. The NANU descriptions are arranged into four groups, as follows:

- Scheduled outages
- Unscheduled outages
- General text message
- Others

Users are advised that the Point of Contact (POC) information contained in the NANU samples are subject to change, specifically the Organization Name and Organization Primary Contact Information (i.e. Contact Website URI, Contact Email ID, Contact Telephone Number, and Contact DSN Telephone Number). The NANU examples include POC information that reflects the time of release of this ICD. However, users should refer to the POC information provided in the most recent NANUs for up-to-date information.

10.1.1 Scheduled Outages

NANU types in the scheduled outage group forecast outages that are planned to begin in the near future. Table 10-1 identifies NANU types in the scheduled outage group. The table describes the NANU acronym used in the message format, the name of the file and a description of the outages. NANU acronyms in this group all begin with “FCST” for “forecast.”
Table 10-I Scheduled Outages

<table>
<thead>
<tr>
<th>NANU ACRONYM</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSTDV</td>
<td>Forecast Delta-V</td>
<td>Scheduled outage times for Delta-V maneuvers.</td>
</tr>
<tr>
<td>FCSTMX</td>
<td>Forecast Maintenance</td>
<td>Scheduled outage times for non-Delta-V maintenance.</td>
</tr>
<tr>
<td>FCSTEXTD</td>
<td>Forecast Extension</td>
<td>Extends the scheduled outage time “Until Further Notice”; references the original forecast NANU.</td>
</tr>
<tr>
<td>FCSTSUMM</td>
<td>Forecast Summary</td>
<td>Exact outage times for the scheduled outage. This is sent after the maintenance is complete and the satellite is set healthy. It references the original forecast NANU. If a FCSTEXTD or a FCSTRESCD were required the FCSTSUMM will reference these.</td>
</tr>
<tr>
<td>FCSTCANC</td>
<td>Forecast Cancellation</td>
<td>Cancels a scheduled outage when a new maintenance time is not yet determined. It references the original forecast NANU message. May be issued after the start time of the referenced NANU.</td>
</tr>
<tr>
<td>FCSTRESCD</td>
<td>Forecast rescheduled</td>
<td>Reschedules a scheduled outage referencing the original FCST NANU message.</td>
</tr>
<tr>
<td>FCSTUUFN</td>
<td>Forecast Unusable Until Further Notice</td>
<td>Scheduled outage of indefinite duration not necessarily related to Delta-V or maintenance activities.</td>
</tr>
</tbody>
</table>

10.1.2 Unscheduled Outages

NANU types in the unscheduled outage group describe unplanned outages that are ongoing or have occurred in the recent past. Table 10-II identifies NANU types in the unscheduled outage group. The table describes the NANU acronym used in the message format, the name of the file and a description of the outages. NANU acronyms in this group all begin with “UNU” or “UNUS” for “unusable.”

Table 10-II Unscheduled Outages

<table>
<thead>
<tr>
<th>NANU ACRONYM</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNUSUUFN</td>
<td>Unusable Until Further Notice</td>
<td>Notifies users that a satellite will be unusable to all users until further notice.</td>
</tr>
<tr>
<td>UNUSABLE</td>
<td>Unusable with reference NANU</td>
<td>Closes out an UNUSUFN NANU and gives the exact outage times; references the UNUSUFN NANU</td>
</tr>
<tr>
<td>UNUNOREF</td>
<td>Unusable with no reference</td>
<td>Gives times for outages that were resolved before an UNUSUFN NANU could be sent.</td>
</tr>
</tbody>
</table>
10.1.3 General NANU Messages

General NANU messages describe a GPS issue, problem, or event deemed noteworthy to the GPS user community. General NANU topics may include but are not limited to failures in meeting SPS Performance Standard requirements, space segment problems that cannot be conveyed through other NANU formats, and space vehicle (SV) disposal announcements. NANU messages of this type are all identified with the “GENERAL” NANU acronym.

General NANU messages may be generically worded and may direct further detailed questions to the appropriate authorities. Recommendations or notes may be included, depending on the circumstances.

The GENERAL message structure is a text paragraph format, such as, the generic example shown in Figure 10-1. The format consists of two sections. Section one contains a header indicating the type of message. Section two is the body of the message.

1. **NANU TYPE: GENERAL**

*** GENERAL MESSAGE TO ALL GPS USERS ***

MESSAGE WRITTEN IN PARAGRAPH FORM

*** GENERAL MESSAGE TO ALL GPS USERS ***,

NANU DTG: 140649Z FEB 2016

Figure 10-1 General Message Format

10.1.4 Other Messages

NANU types in the “other” group describe events that occur infrequently. Table 10-III identifies NANU types in the “other” outage group. The table describes the NANU acronym used in the message format, the name of the file and a description of the message.
Table 10-III Other Types of NANU Messages

<table>
<thead>
<tr>
<th>NANU ACRONYM</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>USABINIT</td>
<td>Initially usable</td>
<td>Notifies users that an SV is set healthy for the first time.</td>
</tr>
<tr>
<td>LEAPSEC</td>
<td>Leap second</td>
<td>Notifies users of an impending leap second.</td>
</tr>
<tr>
<td>LAUNCH</td>
<td>Launch</td>
<td>Notifies users after the launch of a satellite.</td>
</tr>
<tr>
<td>DECOM</td>
<td>Decommission</td>
<td>Notifies users that an SV has been removed from the current constellation identified within the broadcast almanac, but does not necessarily signify permanent disposal.</td>
</tr>
</tbody>
</table>

The LAUNCH and DECOM NANU message templates are shown in Figure 10-2 and Figure 10-3, respectively.

Figure 10-2 LAUNCH NANU Message Template
Figure 10-3 DECOM NANU Message Template

10.2 NANU Notification Times

NANU messages announcing scheduled events are normally distributed to the user community prior to the event. NANU messages announcing unscheduled events are normally distributed to the user community as soon as practical after the event. However, mission critical problems have priority over user notification and therefore may delay normal NANU distribution. NANU notification times typically vary by NANU group. Nominal and threshold NANU notification times for the four NANU groups are summarized in Table 10-IV.

Table 10-IV NANU Notification Times

<table>
<thead>
<tr>
<th>NANU Group</th>
<th>Nominal Notification Times</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled</td>
<td>96 hours prior to outage start</td>
<td>NLT 48 hours prior to outage start (see note #1)</td>
</tr>
<tr>
<td>Unscheduled</td>
<td>15 minutes after outage start</td>
<td>Less than 1 hour after outage start</td>
</tr>
<tr>
<td>General</td>
<td>None – Timing determined on a case-by-case basis</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>None – Timing determined on a case-by-case basis</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: If the need for a planned outage is determined less than 48 hours prior to the start time of the outage, the associated Forecast NANU will not meet the Scheduled outage Threshold.

The length of the outage time specified in scheduled NANU messages is typically longer than the expected maintenance time to allow for minor variations in the time required to accomplish a particular maintenance activity.
10.3 NANU Message Format

The NANU message structure for all messages, except the General, LAUNCH and DECOM messages, is based on a tabular format that simplifies the readability of data. A template for these messages is illustrated in Figure 10-4. These messages are arranged into a header and three sections. The following paragraphs explain this message format in more detail.

Figure 10-4 NANU Message Template

1. **NANU Type:** FCSTDV
 - **NANU Number:** YYYYNNN
 - **NANU DTG:** DDHHMMZ MMM YYYY
 - **Reference NANU:** YYYYNNN
 - **Reference DTG:** DDHHMMZ MMM YYYY
 - **SVN:** XX
 - **PRN:** XX
 - **Start JDY:** JJJ
 - **Start Time Zulu:** HHMM
 - **Start Calendar Date:** DD MMM YYYY
 - **Stop JDY:** JJJ
 - **Stop Time Zulu:** HHMM
 - **Stop Calendar Date:** DD MMM YYYY

2. **Condition:** GPS Satellite SVNxx (PRNxx) will be unusable on JDAY JJJ (DD MMM YYYY) beginning HHMM ZULU until JDAY JJJ (DD MMM YYYY) ending HHMM ZULU.

3. **POC:**
 - Civil Non-Aviation – NAVCEN at 703-313-5900, https://www.navcen.uscg.gov,
 - Civil Aviation – FAA NASEO at 540-422-4178, https://www.faa.gov/air_traffic/nas/gps_reports/,
 - Military Alternate – Combined Space Operations Center, DSN 275-3522, COMM 805-685-3522, jsp occultops@vandenberg.af.mil

10.3.1 NANU Header

The first line of the header includes the title “NOTICE ADVISORY TO NAVSTAR USERS (NANU)” and the assigned identification (ID) number for that NANU message. The ID number consists of the four-digit year followed by a sequentially assigned three-digit number which begins at 001 for the first NANU of a new year. The second line identifies the subject of the message including the Space Vehicle Number (SVN), SV Pseudo Random Noise (PRN) number, type of message, and effective dates for the event. The date is in Julian day-of-year format (JDAY), numbered from 001 to 366, and the time is Zulu referenced in a 24-hour, two digit hour (HH), two digit minute (MM) format. The NANU header is illustrated in Figure 10-5.

Figure 10-5 NANU Header Example
10.3.2 NANU Section One

Section one provides the message description, reference information, satellite identification and outage time in a tabular format.

10.3.2.1 NANU Message Description

The message description includes the NANU type acronym, NANU number, and Day Time Group (DTG). The NANU type acronym is as previously described in paragraphs 10.1.1, 10.1.2, and 10.1.4. The NANU number is as previously described in paragraph 10.4.1. The DTG provides the date the NANU was created. The DTG format is represented as DDHHMM “Z” MMM YYYY. The first two digits identify the calendar day (DD) followed by the hour (HH) and minutes (MM). The letter Z indicates that the time is given in Zulu reference. This is followed by the first three letters of the month (MMM) and the four-digit year (YYYY). This portion of the message is illustrated in Figure 10-6.

![Figure 10-6 Message Description Example](image)

10.3.2.2 NANU Reference Information

As shown in Figure 10-7, the reference information serves to close, extend, cancel, or reschedule previously broadcast messages. The data conveyed in this section includes the message ID number (YYYYNNN) and DTG (REF NANU DTG) of a previously broadcast message. Both of these items will be noted as N/A if the current message is not a follow up message.

![Figure 10-7 Reference Information Example](image)

10.3.2.3 Satellite Identification

As shown in Figure 10-8, the satellite identification information specifies the satellite that is the subject of the NANU. The identification information includes the satellite two-digit SVN and two-digit PRN number.
10.3.2.4 Outage Time

As shown in Figure 10-9, the outage time variables include start and stop dates and times. The start day is provided in three-digit Julian Day-of-Year format (JJJ = 001 to 366) as well as calendar day-month-year format. The calendar day is represented as two digits (DD), followed by the first three letters of the month (MMM) followed by the four-digit year (YYYY). The start time is given in Zulu time in a 24-hour, two-digit hour (HH), and two-digit minute (MM) format. The stop dates and time follow the same formats as the start dates and time.

10.3.3 NANU Section Two

As shown in Figure 10-10, Section 2 is a summary of the NANU in paragraph format including the satellite two-digit SVN and two-digit PRN number, text description of the event, start and stop date(s) in Julian and calendar date formats, and start and stop time(s) in Zulu hours and minutes.
10.3.4 NANU Section Three

Section 3 of the NANU identifies points of contact for additional technical and support information. An example of this section is illustrated in Figure 10-11.

3. POC: CIVIL NON-AVIATION - NAVCEN AT 703-313-5900, HTTPS://WWW.NAVCEN.USCG.GOV,
 CIVIL AVIATION - FAA NASEO AT 540-422-4178, HTTPS://WWW.FAA.GOV/AIR_TRAFFIC/NAS/GPS_REPORTS/,
 MILITARY - GPS OPERATIONS CENTER AT HTTPS://GPS.AFSPC.AF.MIL/GPSOC/, DSN 560-2541, COMM 719-567-2493,
 GPSOPERATIONSCENTER@US.AF.MIL, HTTP://WWW.SCHRIEVER.AF.MIL/GPS/,
 MILITARY ALTERNATE - COMBINED SPACE OPERATIONS CENTER, DSN 275-3522, COMM 805-605-3522,
 JSPOCCOMBATOPS@VANDENBERG.AF.MIL

Figure 10-11 Contact Information
20 APPENDIX 2: OPERATIONAL ADVISORY

20.1 Operational Advisory

The Operational Advisory (OA) message provides a summary of the satellite constellation status. An example is shown in Figure 20-1. The OA is arranged in three sections. The following paragraphs describe each section and subsection of the OA. Users are advised that the Point of Contact (POC) information contained in Section 3 of the OA samples are subject to change, specifically the Organization Name and Organization Primary Contact Information (i.e. Contact Website URI, Contact Email ID, Contact Telephone Number, and Contact DSN Telephone Number). The OA examples include POC information that reflects the time of release of this ICD. However, users should refer to the POC information provided in the most recent OAs for up-to-date information.

UNCLASSIFIED
GPS OPERATIONAL ADVISORY 086.0A1
SUBJ: GPS STATUS 27 MAR 2XXX

1. SATELLITES, PLANES, AND CLOCKS (CS=CESIUM RB=RUBIDIUM)
A. BLOCK I : NONE
B. BLOCK II : PRNS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
 PLANE : SLOT B2, D1, C2, D4, B6, C5, A6, A3, A1, E3, D2, B4, F3, F1
 CLOCK : RB, RB, CS, RB, RB, RB, RB, CS, CS, CS, RB, RB, RB, RB
B. BLOCK II : PRNS 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
 PLANE : SLOT F2, B1, C4, E4, C3, E1, D3, E2, F4, D5, A5, F5, A4, B3
 CLOCK : RB, RB, RB, RB, RB, RB, RB, RB, RB, CS, RB, RB, CS, RB
C. BLOCK III: PRNS 29, 30, 31, 32
 PLANE : SLOT C1, B5, A2, E5
 CLOCK : RB, RB, RB, RB

2. CURRENT ADVISORIES AND FORECASTS:
A. FORECASTS: FOR SEVEN DAYS AFTER EVENT CONCLUDES.
 NANU MSG DATE/TIME PRN TYPE SUMMARY (JDAY/ZULU TIME START – STOP)
 2XXX022 261836Z MAR 2XXX 18 FCSTDV 092/1600-093/0630

B. ADVISORIES:
 NANU MSG DATE/TIME PRN TYPE SUMMARY (JDAY/ZULU TIME START – STOP)
 2XXX021 241836Z MAR 2XXX 32 LAUNCH /-
 2XXX023 262212Z MAR 2XXX GENERAL /-

C. GENERAL:
 NANU MSG DATE/TIME PRN TYPE SUMMARY (JDAY/ZULU TIME START – STOP)
 2XXX020 202158Z MAR 2XXX GENERAL /-
 2XXX021 241836Z MAR 2XXX 32 LAUNCH /-
 2XXX023 262212Z MAR 2XXX GENERAL /-

3. REMARKS:
A. THE POINT OF CONTACT FOR GPS MILITARY OPERATIONAL SUPPORT IS THE GPS OPERATIONS CENTER AT HTTPS://GPS.AFSPC.AF.MIL/GPSOC/, DSN 560-2541, COMM 719-567-2493, GSPOPERATIONSCENTER@US.AF.MIL,
B. CIVIL NON-AVIATION – NAVCEN AT 703-313-5900, HTTPS://WWW.NAVCEN.USCG.GOV,
C. CIVIL AVIATION – FAA NASEO AT 540-422-4178, HTTPS://WWW.FAA.GOV/AIR_TRAFFIC/NAS/GPS_REPORTS/,
D. MILITARY ALTERNATE – COMBINED SPACE OPERATIONS CENTER, DSN 275-3522, COMM 805-605-3522, JSPOCCOMBATOPS@VANDENBERG.AF.MIL

Figure 20-1 Sample Operational Advisory
20.2 OA Header.

The header includes the title “GPS OPERATIONAL ADVISORY,” the subject “SUBJ: GPS STATUS” and the date. The date is represented in a format that includes two-digit day (DD), the first three characters of the month (MMM), and four-digit year (YYYY). The OA header is illustrated in Figure 20-2.

![Figure 20-2 OA Header](image)

20.3 OA Section One

Section one lists operational satellites by PRN number, assigned plane, and clock in current use. Subsection 1.A previously identified operational satellites in Block I. However, these satellites are no longer operational, so this subsection includes the word “NONE.” Subsection 1.B identifies satellites within Block II that are currently in use. Section 1.C identifies satellites within Block III that are currently in use. The example data shown for Section 1 is not meant to represent the actual GPS constellation configuration. The abbreviations CS and RB are used to indicate Cesium and Rubidium clocks, respectively. An example of section one of the OA is illustrated in Figure 20-3.

<table>
<thead>
<tr>
<th>1. SATELLITES, PLANES, AND CLOCKS (CS=CESIUM RB=RUBIDIUM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. BLOCK I : NONE</td>
</tr>
<tr>
<td>B. BLOCK II: PRNS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14</td>
</tr>
<tr>
<td>PLANE : SLOT B2, D1, C2, D4, B6, C5, A6, A3, A1, E3, D2, B4, F3, F1</td>
</tr>
<tr>
<td>CLOCK : RB, RB, CS, RB, RB, RB, RB, CS, CS, CS, RB, RB, RB, RB</td>
</tr>
<tr>
<td>BLOCK II : PRNS 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28</td>
</tr>
<tr>
<td>PLANE : SLOT F2, B1, C4, E4, C3, E1, D3, E2, F4, D5, A5, F5, A4, B3</td>
</tr>
<tr>
<td>CLOCK : RB, RB, RB, RB, RB, RB, RB, RB, CS, RB, RB, CS, RB</td>
</tr>
<tr>
<td>C. BLOCK III: PRNS 29, 30, 31, 32</td>
</tr>
<tr>
<td>PLANE : SLOT C1, B5, A2, E5</td>
</tr>
<tr>
<td>CLOCK : RB, RB, RB, RB</td>
</tr>
</tbody>
</table>

![Figure 20-3 OA Section One](image)

If no data are available, section one is denoted with "RESERVED." An example is illustrated in Figure 20-3a.

| 1. RESERVED |

![Figure 20-3a OA Section One (No Data)](image)
20.4 OA Section Two

Section two contains a summary of current and recent advisories, forecasts, and general text messages. It is organized into three subsections. Subsection 2A summarizes scheduled NANU messages. Subsection 2B summarizes advisory messages (messages with prefix UNU). Section 2C summarizes general text messages. An example of section two of the OA is illustrated in Figure 20-4.

![Figure 20-4 OA Section Two](image)

20.5 OA Section Three.

Section three identifies points of contact for additional technical and support information. It is organized into three subsections, each in text format. An example of section three of the OA is illustrated in Figure 20-5.

![Figure 20-5 OA Section Three](image)
30 APPENDIX 3: SATELLITE OUTAGE FILE (SOF)

Following is a list of the rules or protocols for the SOF data.

Usage Rules

1. The SOF always contains fields identifying creation date/time and reference date/time.
2. A new SOF is built each time a NANU is issued.
3. The latency of the SOF initially may be 15-20 minutes, and is driven by operational procedures and workload.

File Naming Convention

The most recently built SOF is given a standard name that contains the creation date/time and the file format version number, ‘yyyy_ddd_hhmmss_vnn.sof’, where yyyy is the year, ddd is the Jday (day of year starting with 1), hhmmss is the hour/minute/second UTC, and nn is the file format version number. The file format version number will increment sequentially whenever the file format changes.

Dissemination Methods

Unclassified Web Site. The GPSOC maintains a Web site accessible to unclassified military users worldwide. The current SOF is posted at a conspicuous spot on this Web site for download. All other worldwide, civil users may download the SOF from the U.S Coast Guard Navigation Center Web site.

Classification

The SOF is Unclassified and approved for public release. [Reference GPS Security Classification Guide, 30 Sep 2008, Topic Number 700.7.10]

Format

The SOF is formatted in XML according to the format below. The data type definition (DTD), the data format, and the data field definitions are provided.

A sample SOF with an internal DTD is as follows (NOTE: if GPSIS is no longer used to generate the file, the file source tag “GPSISFILE” may be changed):
SOF DTD

<?xml version="1.0"?>
<!DOCTYPE GPSISFILE [
 <!ELEMENT GPSISFILE (CREATION,REFERENCE,(PREDICTED|CURRENT|HISTORICAL)+)>]
 <!ELEMENT CREATION EMPTY>
 <!ELEMENT REFERENCE EMPTY>
 <!ELEMENT PREDICTED EMPTY>
 <!ELEMENT CURRENT EMPTY>
 <!ELEMENT HISTORICAL EMPTY>
 <!ATTLIST GPSISFILE FILEID CDATA #FIXED "SOF">
 <!ATTLIST GPSISFILE SYSID CDATA #FIXED "GPS">
 <!ATTLIST GPSISFILE VERSION CDATA #REQUIRED>
 <!ATTLIST CREATION YEAR CDATA #REQUIRED>
 <!ATTLIST CREATION DOY CDATA #REQUIRED>
 <!ATTLIST CREATION HR CDATA #REQUIRED>
 <!ATTLIST CREATION MIN CDATA #REQUIRED>
 <!ATTLIST CREATION SEC CDATA #REQUIRED>
 <!ATTLIST REFERENCE YEAR CDATA #REQUIRED>
 <!ATTLIST REFERENCE DOY CDATA #REQUIRED>
 <!ATTLIST REFERENCE HR CDATA #REQUIRED>
 <!ATTLIST REFERENCE MIN CDATA #REQUIRED>
 <!ATTLIST REFERENCE SEC CDATA #REQUIRED>
 <!ATTLIST PREDICTED SVID CDATA #REQUIRED>
 <!ATTLIST PREDICTED SVN CDATA #REQUIRED>
 <!ATTLIST PREDICTED NAME (NANU|GOCGIS|USER_DEFINED) #REQUIRED>
 <!ATTLIST PREDICTED TYPE (FCSTDV|FCSTMX) #REQUIRED>
]>
SOF Structure

<?xml version="1.0"?>

<GPSISFILE FILEID="SOF" SYSID="GPS" VERSION="2">

 <CREATION YEAR="2004" DOY="257" HR="11" MIN="2" SEC="11" />
 <REFERENCE YEAR="2004" DOY="257" HR="11" MIN="2" SEC="11" />
 <PREDICTED
 SVID="9" SVN="39"
 NAME="NANU" TYPE="FCSTMX" REFERENCE="2004094"
 START_YEAR="2004" START_DOY="229" START_HR="12" START_MIN="0" START_SEC="0"
 END_YEAR="2004" END_DOY="230" END_HR="0" END_MIN="0" END_SEC="0" />

 <CURRENT
 SVID="31" SVN="31"
 NAME="NANU" TYPE="UNUSUFN" REFERENCE="2004101" />

</GPSISFILE>
START_YEAR="2004" START_DOY="257" START_HR="5" START_MIN="50"
START_SEC="0"

</HISTORICAL>

SVID="27" SVN="27"
NAME="NANU" TYPE="UNUSABLE" REFERENCE="2004100"

START_YEAR="2004" START_DOY="242" START_HR="1" START_MIN="32"
START_SEC="0"

END_YEAR="2004" END_DOY="243" END_HR="19" END_MIN="12" END_SEC="0"

</GPSISFILE>

All times are UTC TIME (ZULU) unless otherwise specified. DOY is day of year (same as JDAY); 1=1 January, 366 is valid for leap year

‘GPSISFILE’ FILE INFORMATION

Occurs once per file

FILEID is always ‘SOF’

SYSID is always ‘GPS’

VERSION is the version number of the file. The version text should be an integer version number. Example: 2

CREATION indicates date/time of file creation. Time is computer time (UTC time zone).

REFERENCE indicates date/time to which SOF data applies. For example, if January 10, 2003 1550Z is the
REFERENCE time then Satellite Outage information will be collected up to and including that time, including
past, current, and predicted information. The REFERENCE time is set to be the date/time of the most recent
NANU incorporated into the SOF.

‘SOF_RECORD’ INFORMATION

Occurs multiple times per file, once for each predicted, current or historical satellite outage issued by the
REFERENCE data/time.

There are three types of SOF records.

PREDICTED identifies predicted outages as of the REFERENCE time.

CURRENT identifies any active outages as of the REFERENCE time, along with the time the outage began.

HISTORICAL identifies actual outages that have taken place prior to the REFERENCE time.
SVID - reusable identifier for each satellite in identified system. For GPS the SVID shall be the PRN.

SVN (Satellite Vehicle Number) – unique sequential number associated with satellite-specific program is an integer. For GPS this is assigned by the US Air Force.

PREDICTED record fields

NAME – Alphanumeric indicator of outage source (currently ‘NANU’). GOCGIS used when no NANU has been issued, yet outage is predicted or a GENERAL NANU has been issued that affects this outage.

TYPE – If NAME=NANU, then the choices are FCSTDV, FCSTMX. If a FCSTEXTD, then implemented as original type (FCSTDV or FCSTMX) with start date/time the same as in the FCSTEXTD and end date/time fixed twenty years out. If FCSTRESCD, then implemented as original type with dates/times as in the FCSTRESCD NANU. If a FCSTCANC type NANU is issued, the original type will be deleted from the SOF.

REFERENCE – reference info. If NAME=NANU this will be the NANU number of the last valid NANU associated with this outage. For example, if there is a FCSTDV issued with number 2003010, then REFERENCE=2003010. As another example, if there is a FCSTMX issued with number 2003047, followed by a FCSTEXTD with number 2003050, then REFERENCE=2003050.

CURRENT record fields

NAME – Alphanumeric indicator of outage source (currently ‘NANU’).

TYPE – If NAME=NANU, then the choices are UNUSUFN and GENERAL. If NANU is initially issued as a GENERAL launch message, then it will be implemented in the SOF as a UNUSUFN with the start date/time as 0000Z on the first day the satellite appears in the almanac.

REFERENCE – reference info. If NAME=NANU this will be the NANU number of the last valid NANU associated with this outage. For example, if there is a UNUSUFN issued with number 2003049, then REFERENCE=2003049.

HISTORICAL record fields

NAME – Alphanumeric indicator of outage source (currently NANU).

TYPE – If NAME=NANU, then the choices are FCSTSUMM, UNUSABLE, UNUNOREF, USABINIT, and GENERAL. If NANU is initially issued as a GENERAL launch message, then it will be implemented in the SOF as an UNUSABLE with stop dates/times as in the USABINIT and the start date/time as 0000Z on the first day the satellite appears in the almanac. This closes out the UNUSUFN that was implemented earlier for the GENERAL launch message. If the NANU is initially issued as a GENERAL decommission it will be implemented in the SOF as an UNUSABLE with the decommission date/time as the end date/time. If a GENERAL NANU is issued which cancels a previous NANU, the previous NANU will not appear in the SOF.

REFERENCE – reference info. If NAME=NANU this will be the NANU number of the last valid NANU associated with this outage. For example, if there is a FCSTSUMM issued with number 2003051, then REFERENCE=2003051.

Format Changes

Changes to file formats are implemented as follows:
1. Files implementing a new format have the VERSION attribute of the GPSISFILE element incremented. Version 1 files encoded the file version in the filename. For example, a file with a previous format may have a name like 2004_202_145503_v01.sof. Later file versions encode the version both in the filename, and the XML VERSION attribute. The filenames of the new file versions look like 2004_202_145503_v02.sof.

2. If a new file format is implemented, both the old and the new file formats will be posted to the web site location for a transition period.

3. The old file format will be posted for six months, and then be removed. This provides time for users to adapt to the new file format.

4. Notifications of file format changes, with samples of the new format, will be published to www.GPS.gov when they are final.
40 APPENDIX 4: ALMANAC DATA FILES

40.1 Almanac Description

The almanac is a subset of GPS satellite clock and ephemeris data, with reduced precision. The CS provides the GPS almanac in two formats, YUMA and System Effectiveness Model (SEM). The YUMA almanac is an easy-to-read format of the almanac data, while the SEM format is intended as input for software tools.

40.2 SEM Almanac Parameters Definition

The SEM almanac parameters are defined in paragraph 20.3.3.5.1.2 of IS-GPS-200. The number of bits, scale factor for the least significant bit (LSB), range, and units of the almanac parameters are specified in Table 20-VI of IS-GPS-200.

40.3 SV Health Word

While the orbital description data is generally usable for months, the satellite health may change at any time. The SEM and YUMA almanac data formats also include an SV health word. The SV health word is defined in paragraph 20.3.3.5.1.3 and Table 20-VIII of IS-GPS-200. Table 40-I specifies the binary health words used in SV navigation (NAV) messages and the equivalent decimal representations used by both the SEM and YUMA almanacs. The SV health word is found in cell R-7 of each record in the SEM almanac. It is found on the third line of each record in the YUMA almanac.

<table>
<thead>
<tr>
<th>Health Setting</th>
<th>Six Bit Health Word in NAV message</th>
<th>SEM and YUMA numerical representation of a 6 bit health word</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>000000</td>
<td>000</td>
</tr>
<tr>
<td>BAD</td>
<td>111100</td>
<td>060</td>
</tr>
<tr>
<td>DEAD</td>
<td>111111</td>
<td>063</td>
</tr>
</tbody>
</table>

40.4 SEM Almanac Format

The SEM format, as shown in Figure 40-1, is arranged with a header that identifies the number of records (number of satellites) and file name (extension .alm). The SEM almanac sample illustrated below is a data sample of one record out of 28 in this sample file.

Figure 40-1 SEM Data Sample
Note: The bold letters and numbers in the rectangles are not part of the SEM format; they are used for identification purposes in Table 40-II. Table 40-II identifies the characteristics of each parameter in the SEM almanac.

Table 40-II Almanac Description (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Almanac Name</th>
<th>Description</th>
<th>Units</th>
<th>Range</th>
<th>Accuracy</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of records</td>
<td>The number of satellite almanac records contained in the file</td>
<td>Records</td>
<td>0 to 32</td>
<td>1</td>
<td>2 significant digits</td>
</tr>
<tr>
<td></td>
<td>Name of Almanac</td>
<td>Descriptive name for the Almanac in the file</td>
<td>N/A</td>
<td>Any combination of valid ASCII characters</td>
<td>N/A</td>
<td>24 significant characters</td>
</tr>
<tr>
<td>2</td>
<td>GPS Week Number</td>
<td>The almanac reference week number (WNa) for all almanac data in the file</td>
<td>Weeks</td>
<td>0 to 1023 *</td>
<td>1</td>
<td>4 significant digits</td>
</tr>
<tr>
<td></td>
<td>GPS Time of Applicability</td>
<td>The number of seconds since the beginning of the almanac reference week. The almanac reference time (t_{oa}) for all almanac data in the file</td>
<td>Second</td>
<td>0 to 602,112</td>
<td>1</td>
<td>6 significant digits</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Blank line for format spacing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Record Format

<table>
<thead>
<tr>
<th>Record</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
<th>Range</th>
<th>Accuracy</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>PRN Number</td>
<td>The satellite PRN number. This is a required data item as it is the GPS user's primary means of identifying GPS satellites</td>
<td>None</td>
<td>1 to 32</td>
<td>None</td>
<td>2 significant digits</td>
</tr>
<tr>
<td>R-2</td>
<td>SVN</td>
<td>The SV reference number. It is equivalent to the space vehicle identification (SVID) number of the SV</td>
<td>None</td>
<td>0 to 255 (zero denotes that this field is empty)</td>
<td>None</td>
<td>3 significant digits</td>
</tr>
<tr>
<td>R-3</td>
<td>Average URA Number</td>
<td>The satellite "average" URA** number. This is not an item in the raw almanac file but is based on the average URA value transmitted by this satellite in subframe 1. The URA is taken in the range of 730 hours</td>
<td>None</td>
<td>0 to 15</td>
<td>1</td>
<td>2 significant digits</td>
</tr>
<tr>
<td>R-4</td>
<td>Eccentricity</td>
<td>This defines the amount of the orbit deviation from a circular orbit (e)**</td>
<td>Unitless</td>
<td>0 to 3.125 E-2</td>
<td>4.77 E-7</td>
<td>7 significant digits</td>
</tr>
<tr>
<td>b</td>
<td>Inclination Offset</td>
<td>Satellite almanac orbital "inclination angle offset" (δ)"** This does not include the 0.30 semicircle reference value (i_0)**</td>
<td>Semi circles</td>
<td>-6.25 E-2 to +6.25 E-2</td>
<td>1.91 E-6</td>
<td>7 significant digits</td>
</tr>
</tbody>
</table>
Table 40-II Almanac Description (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Line No</th>
<th>Almanac Name</th>
<th>Description</th>
<th>Units</th>
<th>Range</th>
<th>Accuracy</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Rate of Right Ascension</td>
<td>Rate of change in the measurement of the angle of right ascension (Ω-DOT)**</td>
<td>Semi circles/second</td>
<td>-1.1921 E-7*** to +1.1921 E-7***</td>
<td>3.64 E-12</td>
<td>7 significant digits</td>
</tr>
<tr>
<td>R-5</td>
<td>Square Root of Semi-Major Axis</td>
<td>Measurement from the center of the orbit to either the point of apogee or the point of perigee (A₁/₂)**</td>
<td>Meters ¹/₂</td>
<td>0 to 8,192</td>
<td>4.88 E-04</td>
<td>9 significant digits</td>
</tr>
<tr>
<td>d</td>
<td>Geographic Longitude of Orbital Plane</td>
<td>Geographic longitude of the orbital plane at the weekly epoch* (Ω₀)**</td>
<td>Semi circles</td>
<td>-1.0 to +1.0</td>
<td>1.19 E-07</td>
<td>9 significant digits</td>
</tr>
<tr>
<td>e</td>
<td>Argument of Perigee</td>
<td>The angle from the equator to perigee (ω)**</td>
<td>Semi circles</td>
<td>-1.0 to +1.0</td>
<td>1.19 E-07</td>
<td>9 significant digits</td>
</tr>
<tr>
<td>R-6</td>
<td>Mean Anomaly</td>
<td>The angle which describes the position of the satellite in its orbit, relative to perigee. (M₀)**</td>
<td>Semi circle</td>
<td>-1.0 to +1.0</td>
<td>1.19 E-07</td>
<td>9 significant digits</td>
</tr>
<tr>
<td>f</td>
<td>Zeroth Order Clock Correction</td>
<td>The satellite almanac zeroth order clock correction term (a₀₀)**</td>
<td>Seconds</td>
<td>-9.7657 E-4*** to +9.7657 E-4***</td>
<td>9.54 E-07</td>
<td>5 significant digits</td>
</tr>
<tr>
<td>g</td>
<td>First Order Clock Correction</td>
<td>The satellite almanac first order clock correction term (a₁₁)**</td>
<td>Seconds/second</td>
<td>-3.7253 E-9*** to +3.7253 E-9***</td>
<td>3.64 E-12</td>
<td>5 significant digits</td>
</tr>
<tr>
<td>R-7</td>
<td>Satellite Health</td>
<td>The satellite subframe 4 and 5, page 25 six-bit health code **</td>
<td>None</td>
<td>0 to 63</td>
<td>None</td>
<td>2 significant digits</td>
</tr>
<tr>
<td>R-8</td>
<td>Satellite Configuration</td>
<td>The satellite subframe 4, page 25 four-bit configuration code **</td>
<td>None</td>
<td>0 to 15</td>
<td>None</td>
<td>2 significant digits</td>
</tr>
<tr>
<td>R-9</td>
<td>Blank line for format spacing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*GPS Week Number as distributed by the CS is a modulo 1024 (0-1023) decimal number representing the modulo 1024 binary week number broadcast from an SV (see IS-GPS-200). Some user applications (such as the SEM program) may require the user to replace the modulo 1024 week number in this format with the full decimal week number (e.g., 0-65,535) in order to determine the correct calendar date of the almanac.

**As defined in IS-GPS-200.

***Rounded up from max range of IS-GPS-200 binary format.
40.5 YUMA Almanac

Parameters used in the YUMA format are not the same as used in the SEM format. The SEM parameters are the same as defined in IS-GPS-200 and broadcast from an SV. The YUMA angular units are in radians whereas the SEM angular units are in semicircles. In addition, the YUMA Orbital Inclination is a direct measure of inclination angle (approximately 55 degrees), whereas the SEM Inclination Offset is relative to 0.30 semicircles (54 degrees). The parameters of the YUMA almanac are identified within the message structure. Figure 40-2 illustrates one record of 28 in a sample YUMA almanac file. Line one of each record identifies the week in which the file was generated as well as the PRN number of the subject SV.

```
******** Week 175 almanac for PRN-01 ********
ID:       01
Health:    000
Eccentricity:  0.5404472351E-002
Time of Applicability(s):  589824.0000
Orbital Inclination(rad):  -0.7931758961E-008
SQRT(A) (m 1/2):  5153.727539
Right Ascen at Week (rad):  -0.4069756641E+000
Argument of Perigee(rad):  -1.719371504
```

Figure 40-2 YUMA Almanac Data Sample
50 APPENDIX 5: LETTERS OF EXCEPTION

50.1 Scope

As indicated in paragraph 1.3, initial signature approval of this document, as well as approval of subsequent changes to the document, can be contingent upon a "letter of exception". This appendix depicts such "letters of exception" when utilized by any signatory of this document in the initial approval cycle and/or in the change approval process. The ICC will omit such letters of exception from subsequent revisions of this document based on written authorization by the respective signatory (without processing a proposed interface revision notice (PIRN) for approval). When some (but not all) of the exceptions taken by a signatory are resolved, the signatory shall provide the ICC with an updated letter of exception for inclusion in the next ICD revision (without processing a PIRN for approval).

50.2 Applicable Documents

The documents listed in Section 2.1 shall be applicable to this appendix.

50.3 Letters of Exception

If signature approval of this document -- as affixed to the cover page -- is marked by an asterisk, it indicates that the approval is contingent upon the exceptions taken by that signatory in a letter of exception. Any letter of exception, which is in force for the revision of the ICD is depicted in Figure 50-1. Signatories for whom no letter of exception is shown have approved this version of the document without exception.
10 September 2004
Letter 03-0426-K211-LFB

Subject: Global Positioning System, (GPS) Block IIF
Contract F04701-96-C-0025; Subject: Approval of ICD-GPS-240

To: ARINC Engineering Services, LLC
4055 Hancock Street, Suite 100
San Diego, CA 92110-5152

Attention: Mr. John Dobyne

To: Department of the Air Force
GPHD
2420 Vela Way, Suite 1467
El Segundo, CA 90245-4659

Attention: Mr. Al Mak, PCO

Reference: ARINC Request for review and approval of ICD-GPS-240
(E-mail dated 08/12/2004)

Pursuant to the ARINC Engineering Services request referenced above,
Boeing is submitting the attached Signatory approval cover sheet for
ICD-GPS-240, dated 10 August 2004. Boeing approves the subject
ICD-GPS-240 with comments and with exception.

The reason for Boeing taking exception to the document is as follows:

The only content within ICD-GPS-240 that applies to the IIF contract
relates to the Almanac Data Files (YUMA and SEM) located in section
3.2.1 (definition of the transfer of almanac data by floppy disk from
OCS to GUSS offline tool and Appendix 3 (definition of the two
almanac data formats). All other content of the ICD falls outside the
scope of the IIF contract.

Should you require additional technical information, please contact Ms.
Rebecca Gaede at 714-372-5178, or the undersigned at 562-797-2630
for contractual matters.

Please contact me if you have any questions.

Sincerely,

/Signed/
Bruce D. Jensen
Contract Management
GPS Programs

Table 50-I Letter of Exception