

CSIS/UTokyo/ICG GNSS Training Programme

Office of Space Affairs U.S. Department of State

11 January 2022

PART 1:

U.S. Program Update

GPS Constellation Status

37 Satellites • 29 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age (yrs)	Oldest
GPS IIR	6 (6*)	20.0	24.4
GPS IIR-M	7 (1*)	14.2	16.3
GPS IIF	12	8.0	11.6
GPS III	4 (1*)	1.7	3.0

*Not set healthy

As of 01 Jan 2022

GPS Signal in Space (SIS) Performance

From 01 Jan 21 to 01 Jan 22

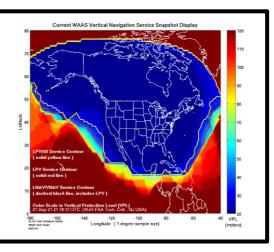
Average URE*	Best Day URE	Worst Day URE		
47.3 cm	31.5 cm (20 Apr 21)	70.4 cm (13 Mar 21)		

*All User Range Errors (UREs) are Root Mean Square values

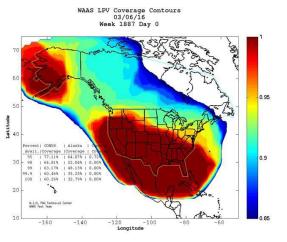
GPS Modernization

Space Segment			SI	V families provide L-Ban	d broadd	cast to User Segment
GPS IIA/IIR • Basic GPS • Nuclear Detonation Detection System (NI	GPS IIR-M • 2 nd Civil Signal (L2C • New Military Signal OS) • Increased Anti-Jam F	• Longer Life	al (L5) • Acc • Incr • Inhe • 4th (• Lon	III (SV01-10) curacy & Power reased Anti-Jam Power erent Signal Integrity Civil Signal (L1C) iger Life ter Clocks	 Unifie Track Search Paylo Lase 	IIF (SV11-32) ed S-Band Telemetry, king & Commanding och & Rescue (SAR) oad er Retroreflector Array esigned NDS Payload
Control Segmen	t	TT	&C of Space S	Segment assets & distrib	ution of	data to user interfaces
Legacy (OCS) • Mainframe System • Command & Control • Signal Monitoring	 Architecture Evolution Plan (AEP) Distributed Architecture Increased Signal Monitoring Coverage Security Accuracy 	OCX Block 0 • GPS III Launch & Checkout System GPS III Contingency • GPS III Mission on A M-Code Early Use (M • Update OCS to oper Core M-Code for M	AEP ICEU) rationalize	OCX Block 1/2 • Fly Constellation & C • Begin New Signal C • Upgraded Information Assurance	ontrol	OCX Block 2+ • Control all signals • Capability On-Ramps • GPS IIIF Evolution
User Segment			Applies S	pace and Control Segm	ent data	for PNT applications
Continued support to an ever-growing number of applications • Annual Public Interface Control Working Group (ICWG) • Standard Positioning Service (SPS) Performance Standard Updates • Precise Positioning Service (PPS) Enhancements • Sustained commitment to transparency • Visit GPS.gov for more info		• L2 • L5	Modernized Civil Signals • L2C (Various commercial applications) • L5 (Safety-of-life, frequency band protected) • L1C (Multi-GNSS interoperability)			

Wide Area Augmentation System (WAAS) Current Status



- Current WAAS provides high availability service to aviation user in North America
 - 4,086 Localizer Performance with Vertical Guidance (LPV) approaches in the NAS
 - Over 1050 LPVs are LPV-200's which provides CAT I equivalent instrument approach performance
- Preparing WAAS to take advantage of Dual Frequency service that will be provided by GPS
 - To continue high availability of WAAS vertical service during ionospheric disturbances
- GEO Sustainability
 - Currently maintaining 3 GEO's (Anik F1R [CRE], Eutelsat 117 WB [GEO 5], SES-15 [GEO 6])
 - Intelsat Galaxy 30 (GEO 7), launched August 2020, currently being integrated, expect operational in 2022


WAAS Modernization Efforts

- Dual Frequency Multi-Constellation (DFMC)
- Advanced Receiver Integrity Monitoring (ARAIM)

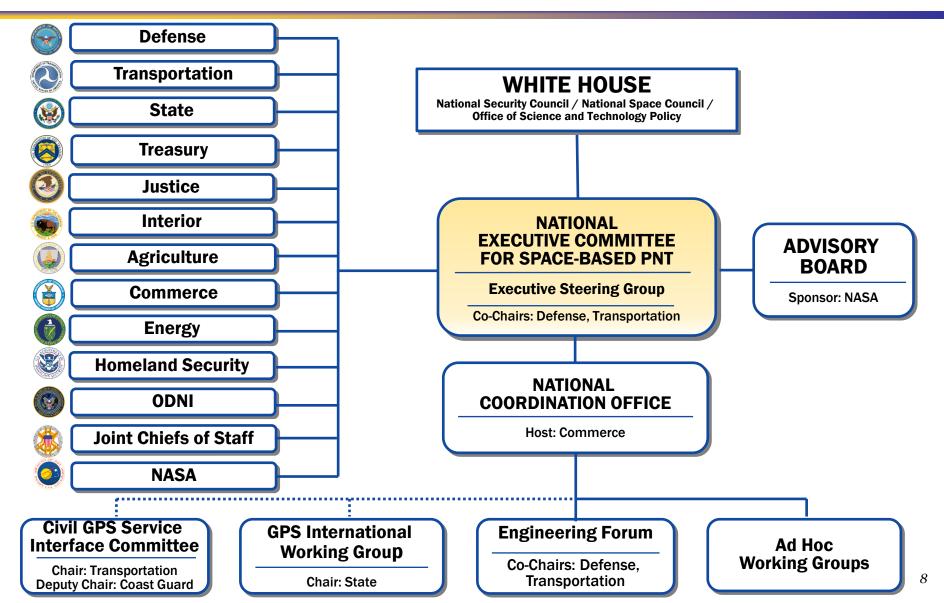
Current WAAS LPV Coverage

WAAS LPV Coverage March 6, 2016 Iono event

WAAS Avionics Equipage Status

- Over 144,000 WAAS equipped aircraft in the NAS
 - WAAS receivers provided by companies such as: Garmin, Universal, Rockwell Collins, Honeywell, Avidyne, Innovative Solutions & Support (IS&S), Thales and Genesys Aerosystem (Chelton)
- Since 2006, aircraft equipage rates have increased each year
- All classes of aircraft are served in all phases of Flight
 - Recent STC for Boeing 737-600/700/800 avionics
- Enabling technology for NextGen programs
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - Performance Based Navigation (PBN)

U.S. Space-based PNT Policy (2020 NSP & SPD-7)


Maintain U.S. leadership in the service provision, and responsible use of GNSS, including GPS and foreign systems

- Ensure **compatibility** ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
- Encourage **interoperability** ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service
- Promote **transparency** in civil service provision and enable **market access** for U.S. industry
- Promote and support the **responsible use of GPS** as the pre-eminent space-based PNT service
- Foreign space-based PNT services may be used to complement civil GPS service
 - Receiver manufacturers should continue to improve security, integrity, and resilience in the face of growing cyber threats
- Encourage foreign development of PNT services and systems based on GPS
- Support international activities to **detect**, **mitigate**, **and increase resilience** to harmful disruption or manipulation of GPS

National Space-Based PNT Organizations

Bilateral International Cooperation

Europe

- GPS-Galileo Cooperation Agreement signed in 2004
- U.S.-EU Space Dialogue and three Working Groups meet regularly

Japan

- Comprehensive Space Dialogue held August 2020
- Technical Working Group discusses GPS and QZSS compatibility and interoperability

India

- U.S.–India Joint statement on GNSS Cooperation 2007
- Civil Space Joint Working Group (CSJWG) met November 2019
 China
- Three Working Groups and GNSS Plenary meeting held May 2018
- Joint Statement of Cooperation on Civil Signal Compatibility and Interoperability – November 2017

International Committee on GNSS (ICG)

- Pursuing a Global Navigation Satellite System-of-Systems to provide civil GNSS services that benefit users worldwide
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
- U.S. priorities include spectrum protection, system interoperability and information dissemination
- 15th Meeting held in Vienna, Austria in September 2021
- UAE will host the 16th Meeting in 2022

PART 2:

GNSS Spectrum Protection, IDM and the ICG

- "Protection" is about keeping the spectrum 'clean'
- Clean spectrum means keeping the frequencies near to GNSS free from licenced, unlicensed and illegal transmissions that interfere with GNSS reception, e.g.
 - GNSS jammers
 - Uncontrolled GNSS repeater installations
 - Spurious emissions from radio equipment, e.g. motors
 - Other radio services, e.g. TV broadcasts
 - Malfunctioning electronic equipment

- Clean spectrum for GNSS minimizes signal errors and maximizes the performance for GNSS receivers
 - Better and more reliable positioning and timing
 - Faster time to first fix
 - Better tracking performance in challenging environments
- Keeping spectrum clean requires technical means to detect when such interference occurs
- National regulators usually have the capacity to detect strong interferers
 - Direction finding equipment or geolocation techniques
 - The ITU can also help coordinate such activities when cross border interference occurs

- Strong interferers are relatively easy to detect
- However, if weak interferers are far away from the detectors, they will not be seen
- The weak interfering signals are still stronger than GNSS and will have widespread impact on GNSS reception
- To find weak interferers (e.g. 'personal' GNSS jammers) requires more specialised local equipment or a dense detector network
- The ICG has been considering this challenge

- ITU is responsible for international spectrum framework, including the protection of radio services
- Actual implementation of this framework is accomplished by national telecommunication administrations
- National telecommunication administrations work with relevant industries and stake holders
- ICG provides a forum that can facilitate and encourage the protection of GNSS spectrum by its members and participants in a voluntary, nonbinding way

ICG Working Groups

- Systems, Signals and Services (Co-Chairs: U.S. & Russia)
 - Focus on compatibility and interoperability, encouraging development of complimentary systems
 - Exchange information on systems and service provision plans
 - Includes spectrum protection and IDM
- Enhancement of GNSS Performance, New Services and Capabilities (Co-Chairs: India, European Space Agency, China)
 - Focus on system enhancements (multipath, integrity, interference, etc.) to meet future needs
- Capacity Building, Education and Outreach (Chair: UN Office for Outer Space Affairs)
 - Focus on training/workshops, promoting scientific applications, space weather
- Reference Frames, Timing and Applications (Co-Chairs: IAG, IGS & FIG)
 - Focus on timing, monitoring and reference station networks

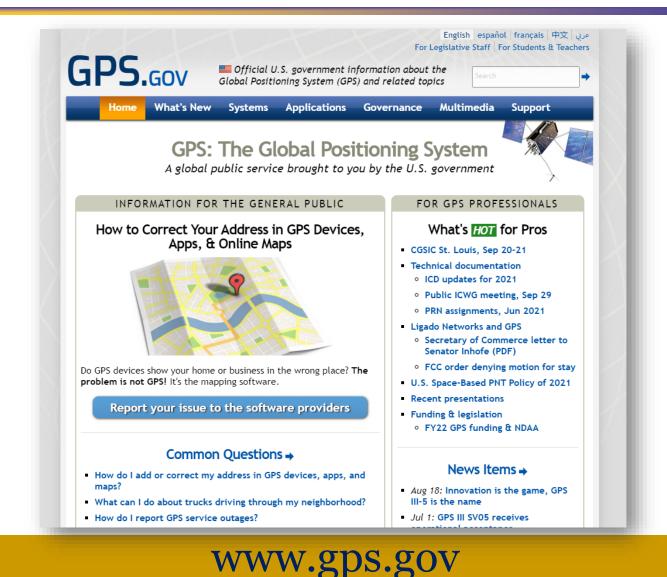
- Establishment of Compatibility Subgroup in 2011
 - Focused on compatibility issues to include spectrum protection and IDM
- Establishment of Interference Detection and Mitigation Task Force in 2013
 - Objectives include:
 - 1) Develop a common set of information to be reported to GNSS civil service centers
 - 2) Establish routine communications among the (provider service) centers
 - 3) Develop guidelines for common capabilities to be considered in the development of future national IDM networks
 - Nine IDM Workshops held since 2012

- Workshop held virtually on 24 August 2021
- Agenda included:
 - Incorporating Resilience into IDM Department of Homeland Security, United States
 - Implementation and Definition of Interference Protection Standards at Space Segment for the European Space Agency - European Space Agency
 - Environment-aware GNSS Position Estimation Process Realisation in Software-Defined Radio (SDR) - University of Rijeka, Croatia
 - Air-Ground coordinated RFI detection system in airport China Research Institute of Radio-wave Propagation
 - Development of the European GNSS Interference Detection Network European Union Agency for Space Programmes
 - Characterization of ADS-B Performance under GNSS Interference Standford University, U.S.
 - Madrid Airport and TMA GNSS RFI Monitoring System (DYLEMA-Madrid) -Spanish Ministry of Transport
 - Interference scenario in S-band: NavIC experience Indian Space Research Organisation

ICG Recommendations Related to IDM and Spectrum Protection

Recent Recommendations Adopted by the ICG

- 2014 Evaluate existing and emerging IDM capabilities and consider developing, testing and implementing these or similar capabilities
- 2014/2017 Crowdsourcing capabilities analysis for IDM
- 2015/2016/2017 UN regional workshops on GNSS spectrum protection and IDM
- 2015/2016 Campaign of Protection of RNSS operations GNSS providers and GNSS user community member states promote spectrum protection
- 2015/2016 UN COPUOS multi-year agenda item focused on National Efforts to protect RNSS Spectrum, and develop IDM capability
- 2017 Encourage national regulators to use the protection criteria in relevant ITU-R Recommendations
- 2019 Produce a draft booklet on GNSS/RNSS spectrum Protection based on material used for the ongoing spectrum seminars



- Adjacent Band Compatibility
- Unintentional Interference
 - Electromagnetic emissions limits from non-licensed transmitters
- Interference Detection and Geo-Location Capabilities
- Critical Infrastructure

For Additional Information...

