

U.S. GPS/GNSS International Activities Update

Royal Institute of Navigation (RIN) Baška GNSS Conference

Office of Space Affairs U.S. Department of State

09 May 2022

U.S. Space-based PNT Policy (2020 NSP & SPD-7)

Maintain U.S. leadership in the service provision, and responsible use of GNSS, including GPS and foreign systems

- Ensure **compatibility** ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
- Encourage **interoperability** ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service
- Promote **transparency** in civil service provision and enable **market access** for U.S. industry
- Promote and support the **responsible use of GPS** as the pre-eminent space-based PNT service
- Foreign space-based PNT services may be used to complement civil GPS service
 - Receiver manufacturers should continue to improve security, integrity, and resilience in the face of growing cyber threats
- Encourage foreign development of PNT services and systems based on GPS
- Support international activities to **detect**, **mitigate**, **and increase resilience** to harmful disruption or manipulation of GPS

National Space-Based PNT Organizations

GPS Constellation Status

37 Satellites • 30 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age (yrs)	Oldest
GPS IIR	7 (5*)	20.3	24.7
GPS IIR-M	7 (1*)	14.5	16.5
GPS IIF	12	8.2	11.8
GPS III	4 (1*)	2.0	3.3

*Not set healthy

As of 01 April 2022

GPS Signal in Space (SIS) Performance

From 01 April 2021 to 01 April 2022

Average URE*	Best Day URE	Worst Day URE		
45.4 cm	31.5 cm (20 Apr 21)	67.7 cm (05 Apr 21)		

*All User Range Errors (UREs) are Root Mean Square values

GPS Modernization

Space Segment			SI	/ families provide L-Ban	d broade	cast to User Segment
GPS IIA/IIR • Basic GPS • Nuclear Detonation Detection System (N	GPS IIR-M • 2 nd Civil Signal (L2C • New Military Signal DS) • Increased Anti-Jam I	GPS IIF • 3 rd Civil Signal (L5) • Longer Life Power • Better Clocks	GPS • Acc • Incr • Inhe • 4 th (• Lon • Bet	III (SV01-10) euracy & Power eased Anti-Jam Power erent Signal Integrity Civil Signal (L1C) ger Life ter Clocks	GPS II • Unifie Trac • Sear Payle • Lase • Rede	IIF (SV11-32) ed S-Band Telemetry, king & Commanding rch & Rescue (SAR) oad er Retroreflector Array esigned NDS Payload
Control Segmen	it	TT&C of S	pace S	Segment assets & distrib	ution of	data to user interfaces
Legacy (OCS) • Mainframe System • Command & Control • Signal Monitoring	 Architecture Evolution Plan (AEP) Distributed Architecture Increased Signal Monitoring Coverage Security Accuracy 	OCX Block 0 • GPS III Launch & Checkout System GPS III Contingency Ops (C • GPS III Mission on AEP M-Code Early Use (MCEU) • Update OCS to operational Core M-Code for MGUE	Ops) lize	OCX Block 1/2 • Fly Constellation & C • Begin New Signal C • Upgraded Informatio Assurance	3PS III ontrol 'n	OCX Block 2+ • Control all signals • Capability On-Ramps • GPS IIIF Evolution
User Segment		Ap	plies S	pace and Control Segm	ent data	a for PNT applications
Continued support to an • Annual Public Interface • Standard Positioning • Precise Positioning So • Sustained commitme • Visit GPS.gov for mor	n ever-growing number of ap e Control Working Group (IC Service (SPS) Performance ervice (PPS) Enhancements ntto transparency e info	plications CWG) Standard Updates	Mode • L20 • L5 • L10	ernized Civil Signals C (Various commercial a (Safety-of-life, frequency C (Multi-GNSS interoper	applicatio y band p ability)	ons) protected)

Wide Area Augmentation System (WAAS) Current Status

- Current WAAS provides high availability service to aviation user in North America
 - 4,105 Localizer Performance with Vertical Guidance (LPV) approaches in the NAS
 - Over 1050 LPVs are LPV-200's which provides CAT I equivalent instrument approach performance
- Preparing WAAS to take advantage of Dual
- Frequency service that will be provided by GPS
 - DFO-2 contract proposals under evaluation with an award expected in 2022
 - To continue high availability of WAAS vertical service during ionospheric disturbances
- GEO Sustainability
 - Currently maintaining 3 GEO's (Eutelsat 117 WB [GEO 5], SES-15 [GEO 6], Galaxy-30 [GEO 7]) and removing 1 GEO (ANIK F1R [CRE])

WAAS Modernization Efforts

- Dual Frequency Multi-Constellation (DFMC)
- Advanced Receiver Integrity Monitoring (ARAIM)

Current WAAS LPV Coverage

WAAS LPV Coverage March 6, 2016 Iono event

WAAS Avionics Equipage Status

- Over 152,225 WAAS equipped aircraft in the NAS
 - WAAS receivers provided by companies such as: Garmin, Universal, Rockwell Collins, Honeywell, Avidyne, Innovative Solutions & Support (IS&S), Thales and Genesys Aerosystem (Chelton)
- Since 2006, aircraft equipage rates have increased each year
- All classes of aircraft are served in all phases of Flight
 - Recent STC for Boeing 737-600/700/800 avionics
- Enabling technology for NextGen programs
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - Performance Based Navigation (PBN)

Bilateral International Cooperation

Europe

- GPS-Galileo Cooperation Agreement signed in 2004
- U.S.-EU Space Dialogue and three Working Groups meet regularly

Japan

- Comprehensive Space Dialogue held August 2020
- Technical Working Group discusses GPS and QZSS compatibility and interoperability

India

- U.S.–India Joint statement on GNSS Cooperation 2007
- Civil Space Joint Working Group (CSJWG) met November 2019
 China
- Three Working Groups and GNSS Plenary meeting held May 2018
- Joint Statement of Cooperation on Civil Signal Compatibility and Interoperability – November 2017

International Committee on GNSS (ICG)

- Pursuing a Global Navigation Satellite System-of-Systems to provide civil GNSS services that benefit users worldwide
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
- U.S. priorities include spectrum protection, system interoperability and information dissemination
- 15th Meeting held in Vienna, Austria in September 2021
- UAE will host the 16th Meeting in October 2022

15th Meeting of the International Committee on GNSS (ICG)

- Hybrid format with both in-person and virtual participation
 - ➢ More than 300 people will participated
 - All 6 GNSS Providers, as well as other members and observers
- Agenda included:
 - Meeting of the Providers' Forum
 - System Provider Updates
 - > Applications and Experts Session
 - > Meeting of all four Working Groups

ICG Working Groups

- Systems, Signals and Services (Co-Chairs: U.S. & Russia)
 - Focus on compatibility and interoperability, encouraging development of complimentary systems
 - Exchange information on systems and service provision plans
 - Includes spectrum protection and IDM
- Enhancement of GNSS Performance, New Services and Capabilities (Co-Chairs: India, European Space Agency, China)
 - Focus on system enhancements (multipath, integrity, interference, etc.) to meet future needs
- Capacity Building, Education and Outreach (Chair: UN Office for Outer Space Affairs)
 - Focus on training/workshops, promoting scientific applications, space weather
- Reference Frames, Timing and Applications (Co-Chairs: IAG, IGS & FIG)
 - Focus on timing, monitoring and reference station networks

- ITU is responsible for international spectrum framework, including the protection of radio services
- Actual implementation of this framework is accomplished by national telecommunication administrations
- National telecommunication administrations work with relevant industries and stake holders
- ICG provides a forum that can facilitate and encourage the protection of GNSS spectrum by its members and participants in a voluntary, nonbinding way

- Establishment of Compatibility Subgroup in 2011
 - Focused on compatibility issues to include spectrum protection and IDM
- Establishment of Interference Detection and Mitigation Task Force in 2013
 - Objectives include:
 - 1) Develop a common set of information to be reported to GNSS civil service centers
 - 2) Establish routine communications among the (provider service) centers
 - 3) Develop guidelines for common capabilities to be considered in the development of future national IDM networks
 - Nine IDM Workshops held since 2012

- Workshop held virtually on 24 August 2021
- Agenda included:
 - Incorporating Resilience into IDM Department of Homeland Security, United States
 - Implementation and Definition of Interference Protection Standards at Space Segment for the European Space Agency - European Space Agency
 - Environment-aware GNSS Position Estimation Process Realisation in Software-Defined Radio (SDR) - University of Rijeka, Croatia
 - Air-Ground coordinated RFI detection system in airport China Research Institute of Radio-wave Propagation
 - Development of the European GNSS Interference Detection Network European Union Agency for Space Programmes
 - Characterization of ADS-B Performance under GNSS Interference Standford University, U.S.
 - Madrid Airport and TMA GNSS RFI Monitoring System (DYLEMA-Madrid) -Spanish Ministry of Transport
 - Interference scenario in S-band: NavIC experience Indian Space Research Organisation

- Interoperability and Service Standards
 - Performance Standard Template
 - "Guidelines" document developed as a template
 - International GNSS Monitoring and Assessment (IGMA)
 - Trial Project with IGS continues
 - Interoperable Time Focus on System Time Offsets
- Space Service Volume
 - Updated UN booklet "The Interoperable GNSS SSV" published
 - Technical discussions focused on an interoperable space service volume and development of space-based user equipment
- Precise Point Positioning (PPP)
 - Task Force on PPP interoperability formed in 2019 co-chaired by Australia, Japan and EU

Summary

- U.S. Policy continues to focus on maintaining leadership in the service provision
 - Includes the addition of responsible use of GPS/GNSS
 - **Compatibility, interoperability,** and **transparency** remain priorities
 - Pursued through bilateral and multilateral dialogues
- Bilateral cooperation continues with partners
- The work of the ICG, with strong U.S. participation, continues its focus on civil GNSS services that benefit users worldwide
 - U.S. priorities include spectrum protection, system interoperability and information dissemination

For Additional Information...

