DHS SCIENCE AND TECHNOLOGY

Responsible Use of PNT for DLT in the Financial Services Sector

ATIS Time and Money Conference 2020

Science and Technology

January 28, 2020

Ernest Wong

Technical Manager Technology Centers Division Science and Technology Directorate

Presentation Outline

- Introduction Sections
 - Precision Timing in DLT: What could go wrong? (or right?)
 - Overview of Threats to GPS Timing
 - Role of DHS
- Protecting the Financial Services Sector against PNT Spoofing
 - Risk Assessment Spectrum
 - PNT Receivers and Attack Surfaces
 - Resilient PNT Conformance Framework
 - Mitigations: The Flip
 - Other Mitigations
 - Other Things Coming "Soon" from DHS

Precision Timing in DLT:

What Could Go Wrong?

- Potential Applications
 - Clearance and Settlements
 - Market Data

 Timing Compliance
- Building the Case

Trading

- A trade is a trade, regardless of underlying technology.
 - All (DLT) transactions will need to be time stamped (assumption).
- Firms have to trace to sovereign time / UTC.
 - This generally means a GPS receiver.
- GPS time can be spoofed.
- What happens when the time stamps are wrong?
 - When would the discrepancy be noticed?
 - Would DLT help identify the discrepancy? (maybe not)
 - Would it hurt or help?

GPS/PNT Threat Classes

DIVERSE PERSPECTIVES + SHARED GOALS = POWERFUL SOLUTIONS

Science and Technology

Homeland

DHS Role in Timing for Critical Infrastructure

- PNT in Critical Infrastructure: Accurate position, navigation and timing (PNT) information is necessary for the functioning of many critical infrastructure sectors.
 - Precision timing is particularly important.
 - Primary source of distributed & accurate timing is currently through GPS.
- **Problem**: GPS susceptible to disruption (both intentional and unintentional)
 - Jamming (Newark I-95, North Korea, criminal activity)
 - Spoofing (Possible examples from recent open source media)
 - Spoofing also becoming easier w/ low-cost SDRs & open source code
- DHS Role:
 - Improve the resilience of critical infrastructure against PNT threats and disruptions via:
 - Engaging with industry for information sharing and risk management.
 - Developing technology and mitigations.

Protecting the Financial Services Sector Against PNT Spoofing

Risk Assessment Spectrum

Large-scale, high-speed, high-value operations with multiple Cesium atomic Clocks

- <u>Operation</u>: Trusting the atomic clock and keeping it on holdover during the weekday.
 - Significantly reduces risk due to the smaller attack window.
- <u>Remaining Risk</u>: Attack Surface ≠ Attack Window. Attack surface open to data & measurement spoofing.

Traditional operations with low-cost GPS receiver

- <u>Operation</u>: Time is provided from a basic GPS receiver constantly listening through the RF port.
- <u>Risk:</u> Susceptible to both measurement spoofing and data spoofing.
- <u>Options</u>: There are mitigations you can employ that won't cost as much as a Cs atomic clock.

PNT Receivers and Attack Surfaces

- PNT receivers should be treated like computers rather than radios.
 - The PNT antenna is like an open port.
 - There is data processing inside the receiver.
- When mitigating for PNT resilience, need to assess both the threat and the attack surface.

- Caution when mitigating: Adding more PNT sources does not automatically provide resilience.
 - More PNT sources = more attack surfaces.
 - When incorporating other PNT sources, they should also be examined from this perspective and hardened.

Resilient PNT Conformance Framework

Vision: Develop common language for defining resilient PNT equipment

Accomplished through defining multiple levels of resilience.

Working Group:

- Industry working group consisting of most major system integrators (timing).
- Looking for additional CI end-user representation and input.

Will enable:

- Product differentiation for vendors
- Improved risk management and decision making by CI operators when acquiring new PNT equipment (or updating existing deployments).

Resilience Levels (Preview)

Level 1: Robust Recovery

Level 4: Operate through Threats

Initial Focus: GNSS-based timing equipment

Levels apply to:

Key Concepts:

GNSS Chipsets

Integrated Receivers

System of Systems

Defense-in-Depth

Resilience Levels Core Functions

Mitigations: The Flip (Courtesy of HSSEDI)

Credit: Homeland Security Systems Engineering and Development Institute (HSSEDI) FFRDC

Mitigations: The Flip

(Courtesy of HSSEDI)

Principle: Trust your clock

- Likely do not need the precision GPS provides (40ns).
- Therefore keep clock in holdover and perform intermittent disciplining as needed.
- Significantly reduces attack window.

Attacker can't spoof or jam a receiver if it isn't listening.

DIVERSE PERSPECTIVES + SHARED GOALS = POWERFUL SOLUTIONS

Science and Technology

Other User Mitigations & Considerations

- Horizon Nulling Antennas
- DHS Best Practices
 - User Deployment strategies
 - E.g. obscure view of antenna, decoys, placement
 - On <u>GPS.gov</u> (lower right-hand corner):
 - "Best Practices for Improving the Operation and Development of GPS Equipment Used by Critical Infrastructure - Jan 2017"
- "Resilient PNT Equipment"
 - Spoofing detection capabilities
 - Resilient PNT Conformance framework can help with this comparison.
 - Robust recovery capabilities
 - Ability to "return to a known good state" (DHS Best Practices, Jan 2017)
 - Essential since there's no such thing as perfect security.
 - This is foundational capability for defense-in-depth approach.

NCCIC National Cybersecurity & Communications Integration Center

NCC National Coordinating Center for Communica

Improving the Operation and Development of Global Positioning System (GPS) Equipment Used by Critical Infrastructure

UNCLASSIFIED

Other Things Coming "Soon" from DHS

Epsilon Algorithms

- What: Spoofing detection algorithms focused on consistency checks using PVT data.
- <u>Who</u> (Intended Use):
 - System Integrators: For integration into their products.
 - DIY End-user: Algorithms can utilize outputs from an existing GPS receiver.
- When: By end of calendar year 2020

Spoofing Detection Toolkit

- <u>What</u>: API with a suite of spoofing detection algorithms for the full RF-processing chain.
- Who (Intended Use):
 - System Integrators: For integration into their products. Algorithms for the full RF-processing chain requires sufficient data (either revised chipsets or a SDR)
 - DIY End-user : With DIY documentation, will be able to take the API and algorithms for use on an SDR and processor (e.g. SoC).
- When: Targeting end of calendar year 2020

Other Things Coming "Soon" from DHS (con't)

Best Practices for Financial Services Sector

- What: DHS best practices document tailored for financial services sector
 - Will likely include risk and mitigation information & recommendations on how to apply the Conformance Framework.
 - Will include suggestions for different scale operations and take into consideration tradeoffs of economic costs vs. risks.
- For Who: Financial Sector End-users
- When: TBD (likely Calendar Year 2021)

• 2020 GPS Equipment Testing for Critical Infrastructure (GET-CI 2020)

- What: Live-sky GPS spoofing event for industry to test and evaluate their equipment
- <u>For Who</u>: Equipment manufacturers, critical infrastructure end-users
- When: Expecting 2nd half of 2020
- <u>How to apply</u>: RFI for participation will be posted on SAM.gov

Questions?

Engage With Us!

Homeland Security

Science and Technology

Backup Slides

Conformance Framework Approach

Phases:

- Phase 1: Guidance documentation (targeting Spring 2020)
- Phase 2: Standards development (starting by 2021)

Reference Architecture:

- Reference Architecture documentation (FY20)
- Reference Implementation Demo (FY21)

Industry Participation:

- Most major system integrators are part of working group (WG)
 - DOT and FAA also part of WG (to ensure extensibility to P/N)
- Looking for more end-user participation and input

Conformance Framework: Guiding Principles

• Guiding Principles:

- Must be comprehensive
- Must be simple
- Must be consistent
- Must NOT be prescriptive

 Challenge: Iterative process to distill framework into something that fits this "quadruple constraint."

Conformance Framework: Key Concepts

Key Concepts:

- Defense-in-Depth (2 dimensions)
- Resilience Levels
- Core Functions

Resilience Levels (Preview)

Level 1: Robust Recovery

Have working definitions, but needs some refinement to better satisfy the four guiding priorities.

• Level 4: Operate through Threats

Core Functions

Blends NIST Cybersecurity Framework & PPD-21 National Preparedness System for Resilience

