Assuring PNT- A PTA program
and
Recommendations of the US PNT Advisory Board
Brad Parkinson
Acting Chair US PNTAB
Supported by FAA, NASA, AND Aerospace Corp.
(All opinions are my own)
Outline of Talk

• Role of the PNTAB in the US Government

• The PTA - A Program to Assure PNT by Protecting, Toughening and Augmenting GNSS

• PNTAB recommendations – relationship to the PTA Program
U.S. Organizational Structure for GPS Governance

Represented by Deputy Secretaries

- Defense
- Transportation
- State
- Interior
- Agriculture
- Commerce
- Homeland Security
- Joint Chiefs of Staff
- NASA

WHITE HOUSE

NATIONAL EXECUTIVE COMMITTEE FOR SPACE-BASED PNT

Executive Steering Group
Co-Chairs: Defense, Transportation

NATIONAL COORDINATION OFFICE

Host: Commerce

ADVISORY BOARD
Sponsor: NASA

GPS International Working Group
Chair: State

Engineering Forum
Co-Chairs: Defense, Transportation

Ad Hoc Working Groups

11/14/14

PTA for PNT - B. Parkinson
PNTAB Charter

The National, Space-Based, Positioning, Navigation, and Timing (PNT) Advisory Board (PNTAB) provides:

• **Independent** advice to the U.S. government on GPS-related
 ➢ policy,
 ➢ planning,
 ➢ program management, and
 ➢ funding profiles
In relation to the current state of national and **international satellite navigation services**.

• **Fundamental Purpose:**
 Assured PNT (At required availability, accuracy and integrity)
 ✐ PNTAB Generally meets 1 to 2 times per year.
PNTAB Advisors

• **Bradford Parkinson** (Acting Chair), Stanford University original GPS Program Director
• **Thad Allen**, Booz Allen Hamilton retired Commandant of the Coast Guard
• **Penina Axelrad**, University of Colorado, Chair of Department of Aerospace Engineering
• **John Betz**, MITRE, Former Chair Air Force Scientific Advisory Board
• **Dean Brenner**, Vice President, Government Affairs Qualcomm
• **Joseph D. Burns**, United Airlines, Former Chief Technical Pilot, United Airlines
• **Per K. Enge**, Stanford University, Head of Stanford Center for PNT
• **Martin C. Faga**, MITRE Retired CEO of Mitre
• **James E. Geringer**, ESRI Former Governor of Wyoming
• **Ronald R. Hatch**, consultant to John Deere, inventor of the GPS “Hatch” filter
• **Rajiv Khosla**, Colorado State University, Past President, International Soc. of Precision Agriculture
• **Peter Marquez**, Planetary Resources, Former White House National Security Space Policy
• **Terence J. McGurn**, private consultant, retired CIA analyst of Position, Navigation and Control
• **Timothy A. Murphy**, The Boeing Company, Technical Fellow with Boeing Commercial Airplane
• **Ruth Neilan**, Jet Propulsion Laboratory, vice chair, Global Geodetic Observing System
• **T. Russell Shields**, Ygomi, a founder of NavTeq
• **Ann Ciganer**, VP Trimble Navigation, Director of GPS Innovation Alliance
• **Gerhard Beutler**, Professor of Astronomy and Director of the Astronomical Institute, U. of Bern.
• **Elizabeth Cannon**, Canadian Aeronautics and Space Institute (Canada), President U of Calgary
• **Arve Dimmen**, Division Director Maritime Safety Norwegian Coastal Administration (Norway)
• **Matt Higgins**, President International GNSS Society (Australia)
• **Hiroshi Nishiguchi**, Chairman Japan GPS Council (Japan)
• **Rafaat M. Rashad**, Chairman Arab Institute of Navigation (Egypt)

◆ We take great pride in the inclusion of International members at all meetings
The PNT Advisory Board 2013-14

In Memoriam

Dr. James Schlesinger passed away on March 27, 2014, while serving his fourth term as chairman of the National Space-Based PNT Advisory Board.
Good News: World-wide dependency on GNSS – PNT Taken for Granted

- Military
- Civil
 - Transportation
 - Aviation
 - Automobile
 - Maritime
 - Rail Control
 - Public Services
 - Timing & Frequency
 - Surveying
 - Surveillance
 - Machine Control
 - Other
Progress in Quantifying GNSS Benefits: Economic Study under US PNTAB Now being Refined

<table>
<thead>
<tr>
<th>Industry</th>
<th>Annual GPS Equipment Spending ($ billion)</th>
<th>Estimated Annual Benefits ($ billion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision agriculture (crop farming)</td>
<td>$0.5</td>
<td>$19.9 - $33.2</td>
</tr>
<tr>
<td>Engineering Construction (heavy & civil and surveying/mapping)</td>
<td>$1.1</td>
<td>$9.2 - $23.0</td>
</tr>
<tr>
<td>Transportation (commercial surface transportation)</td>
<td>$3.2</td>
<td>$10.3 - $15.1</td>
</tr>
<tr>
<td>Sub-total (3 industries examined)</td>
<td>$4.8</td>
<td>$39.4 - $71.3</td>
</tr>
<tr>
<td>Other commercial GPS users</td>
<td>$3.5</td>
<td>$28.2 - $51.1</td>
</tr>
<tr>
<td>Total commercial GPS users in the U.S.</td>
<td>$8.3</td>
<td>$67.6 - $122.4</td>
</tr>
</tbody>
</table>

• Over $65B In Annual Benefits in identified Commercial Areas

Source: ndp|consulting

8/14/14
Conclusion:
PNT/GPS/(GNSS) – The “Stealth” Utility - A powerful, worldwide, enabler for Productivity and Safety
So what is the Problem?

• Some have publically stated: “GPS is much too vulnerable, we must replace it with new Inertials and Chip Scale Atomic Clocks”

• Indeed, GPS has a very weak signal, and also depends on Line of Sight to at least 4 satellites, But...

• IMHO – Better Statement – the ”PTA” solution: “We must Protect, Toughen, and Augment GPS/GNSS to ensure that it meets User’s PNT needs”
Reminder: Prerequisites for GPS/GNSS contribution to assured world-wide PNT –

Clear and truthful Ranging to ≥ 4 Satellites

- Must have Line of Sight to GPS/GNSS
 - For sky-impaired, need densification
 (GPS + Galileo + GLONASS + Beidou)
- Must be able to accurately measure range
 - Overcome local interference
- Must insure **Integrity** of received signals
 - Self-integrity (RAIM/ARAIM)
 - External rapid-checking (e.g. WAAS, Egnos, MSAS)
 - + (potentially) GDGPS

“...it is recommended that a 30+ GPS satellite constellation be geometrically optimized”

“... eliminate Selective Availability (S/A) capabilities from GPS III”

“...Begin transmitting navigation message on L2C”

“...it is essential to implement laser retroreflectors on GPS III.”

Highlights in **Red** are PNTAB recommendations or Actions
Green – Done
Orange - Underway
PNTAB Actions to Assure PNT for all users

- **First** – Increase National Awareness of Value of GPS (and GNSS) and System Vulnerabilities

 PNTAB is sponsoring “Economic Study of Value”
 - Initial result: GPS provides over $60B/yr of Benefits
 - Refinement underway

“Develop a Formal National Threat Model for PNT Applications in Critical Infrastructure:

The DoD routinely develops and updates threat models to GPS defense capabilities, and also prioritizes countermeasures to these threats. However, **public safety GPS stakeholders, and other critical sectors, do not have a validated threat model.**”

- **Second** – Implement specific PTA steps to:
 - **Protect** Clear and Truthful Reception
 - **Toughen User’s Receivers**
 - **Augment** or substitute PNT sources

Highlights in **Red** are PNTAB recommendations or Actions
Green – Done
Orange - Underway
Three Action Areas:

PTA – Protect, Toughen, Augment

• Protect the Clear & Truthful Signal – 7 steps
 – Pre-actions – even before interference occurs -
 Legal/Law Enforcement/FCC:
 • Protect Spectrum/Enact strong Penalties/suppress
 Jammer sales
 – Re-actions when interference/spoofing occurs –
 • Quick Knowledge of Jamming Area/ Pinpoint Location/
 Apprehend Perpetrator/Prosecute as Appropriate
Selected Actions to **Protect**

- **Protect the bands adjacent to GNSS as “Quiet” neighborhoods**

 “Prevent the Proliferation of Licensed Emitters in GPS Frequency Bands: European Proposals by CEPT would license certain terrestrial transmitters, or “pseudolites,” to operate in the primary GPS band (also known as GPS L1). This frequency band is designated as a Radionavigation Satellite Service (RNSS) and should be very carefully regulated.”

- **Identify GPS as Critical Infrastructure – identify and empower lead federal Official**

 “**Formally Designate GPS as a Critical Infrastructure Sector for the United States:** Virtually every DHS-designated critical infrastructure sector is dependent on access to GPS for positioning, timing, or both. Specifically, these PNT services are pervasive elements in 14 of 16 critical U.S. sectors.”
Selected Actions to Protect

- Work with Lawmakers to increase legal penalties for interference

“Shutting Down and Prosecuting Interferers – Legal and Law Enforcement actions. The National Executive Committee should examine whether or not they should sponsor Legislation in Congress that addresses interference to GPS that provides substantial fines and jail time for both possession and use of GPS jammers.”
Assured Availability of PNT - "PTA"

Protect the Clear and Truthful Signal—The Reactions - “DIEP”

Re1. Detection – Rapid Location of Jammed Receivers

Re2. Identification & Location of Jammer within minutes

Re3. Physical Elimination of the Jammer

Re4. Prosecution of the Offender

Work with Communications and Enforcement to improve timeliness and accuracy of interference identification (e.g. crowdsourcing, every cell phone a detector?)

“Develop means to detect, measure, locate, and mitigate radio interference or jamming in support of the National Security Infrastructure.”
Three Action Areas:

PTA – **Protect, Toughen, Augment**

- **Toughen Users’ Receivers to use GNSS**
 - Increase Jam resistance – use well established techniques
 - **Diversify** - *All GNSS signal* receivers (with vector feature)
Assured Availability of PNT "PTA"

2nd Action Area: Toughening GPS Receivers

- Basic Hi Quality Receiver
- + Wider Spread Signal (L1C)
- + Inertial Aiding
- + Digital Beam Forming Antenna
- + A/C shading Range 1/6th Mile

Example: 1Kw Interferer at Capital

Line of Sight Distances

Effective Areas of 1KW Interference Against GPS A/J “Nibbles”
Selected Actions to **Toughen**

- Develop Industry (ICAO?/RTCA/RTCM) standards for improving Interference resistance
 - Deep Inertial integration
 - Directional antennas
 - Vector Receivers (All GNSSs)
- Encourage users to move to tougher receivers

“Government should foster and help to stimulate Manufacturers to speed up the development and offering of interference resistant GPS receivers, especially for safety-of-life applications such as commercial air and maritime.”
Three Action Areas:
PTA – Protect, Toughen, Augment

- Augment or substitute PNT sources
 - Densify and Diversify satellites – Signals/constellations
 - Worldwide Integrity Monitoring
 - Use Complementary PNT Sources – e.g. DME, eLoran

Assured Availability of PNT - "PTA"
Assured Availability of PNT - "PTA"

Augment or substitute PNT Sources

- GLONASS – (Russia)
- GPS (USA)
- Galileo (European)
- Compass (Beidou China)
- QZSS (Japan)

GNSS Community – both **Toughen and Augment** PNT

Effectiveness driven by **# of operational constellations, constellation size, AND their Integrity**
Augment or substitute PNT Sources

Augmentation using all GNSS promotes:

- Diversification (for GPS signal denied) and
- Densification (for sky-impaired)

- Use of all GNSS must address integrity
- Note: Also improves GPS anti-jam (Toughens)
- Enables more capable ARAIM
 (Advanced Receiver Autonomous Integrity Monitoring)

- Best Technique: Interchangeability
 (Any 4 will do – CARS – Cross Augmentation Reference System)

Need authorization to use Galileo/et.al.? in US
Emphasizing – *For many uses* (e.g. Aircraft and Safety of Life)

Availability and Accuracy of the signals is insufficient

Integrity is also required for *adoption*

Required Integrity:

- Probability that expected accuracy is not exceeded
 - [Example – Cat III Landing - No Hazardous or misleading information > 10^{-7}]

“Continue to implement ARAIM & inertial for Integrity (+WAAS/EGNOS/MSAS + ...)”
Assured Availability of PNT "PTA"

Augment Monitoring All GNSS Civil Signals for Integrity and Accuracy with NASA’s GDGDP

In Europe: Plus EGNOS GPS L1 C/A and Galileo

FAA WAAS North America Location GPS L1 C/A Civil Signals Only

GPS Control Segment – Military Signals Only

BUT: GDGDP is not currently a direct part of the GPS Control System

Real-Time Tracking Network (200+ sites)

NASA’s Existing Global Differential GPS (GDGDP) System
All GPS Civil Signals Worldwide Expandable to All GNSS

11/14/14
Assuring Integrity of the GDGPS Integrity System

Minimum Simultaneous Tracking Redundancy for satellites located over various points (i.e. sub-nadir)

Typically 25 - 50 – fold redundancy

“Recommend GDGPS be considered for near-real time, worldwide Integrity Monitoring”
Augment or substitute PNT Sources

- **Ground Augmentations**
 - Pseudolites **outside** GNSS frequencies for special, fixed situations

- **Backup PNT Sources**
 - “We support the FAA’s efforts to provide Alternate PNT options that can provide a robust backup to GPS and deter malicious interference.”
 - “We strongly recommend that the previously announced decision (to deploy eLoran as the primary Alternate PNT) should be reconfirmed and quickly implemented.”
Augment For Ground/Maritime Users

eLoran
- Powerful Signal (up to 100kW)
- 100 kHz
- 2 D
- In calibrated area ~10m accuracy

- US GPS PNT Advisory Board (2008):
 - Unanimous Recommendation – deploy eLoran

- PNT EXCOM, DOT and DHS supported this recommendation
 - Lack of appropriate funding forced cancellation of eLoran and dismantling of existing LORAN stations

- US Congress now appears to be taking action
 - Perception of need is increasing
Who is responsible for Protecting, Toughening and Augmenting for assured PNT?

To My Knowledge:

• Parts of PTA are being pursued (Need for clearer responsibility?)

• No single entity (in the US – Europe?) is identified that has the knowledge, breadth, will, and resources...

• Perhaps an International Focus Group (A separate working Group in ICG? – Or assign to an existing Groups?)
Future Topics for PNTAB Consideration
(Next meeting in December, 2014)

• Anti-spoofing authentication codes
• Tracking the progress of eLoran deployment
• Updating the PNTAB Economic Benefits study
• Status of FCC Licensing use of non-US GNSS
• Explore state-of-the-art in commercially available Receiver toughening
Conclusion...

GNSS is the backbone of “Assured PNT”
[e.g. Availability, Accuracy, & Integrity]

- but -

To continue the PNT Revolution for all users,

• Let’s Accelerate and Expand PTA:
 – Protect – Legal and Law enforcement
 – Toughen – Maximize affordable Jam resistance
 – Augment – Use all available sources of PNT
Thank You