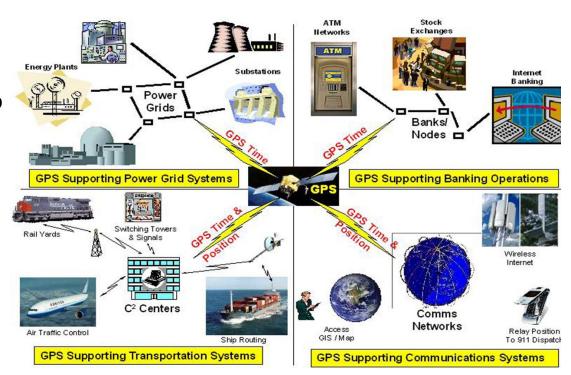


GPS Use in U.S. Critical Infrastructure

and Emergency Communications

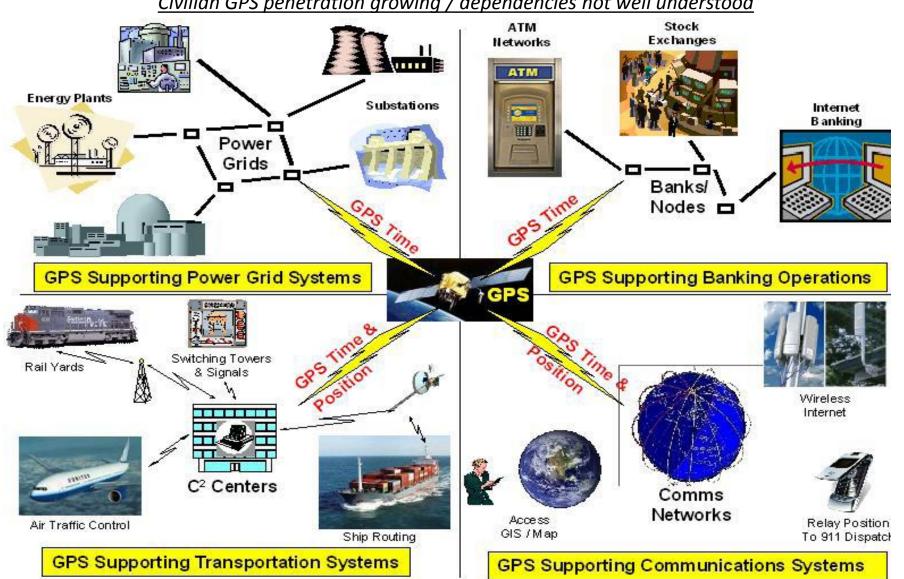
Presented to the DOT, DoD, and DHS

United States Technical Training Institute (USTTI)


Presenter

Monty Graham
Program Manager
GPS Jamming & Interference
NPPD/CS&C/NCC

GPS Use Expanding within U.S. Infrastructure


- GPS is increasingly integrated into sectors' operations because it is accurate, available, reliable, and provided at no cost to users
- Interdependencies exist between critical infrastructure sectors that use GPS.

Civilian GPS Applications

Civilian GPS penetration growing / dependencies not well understood

GPS Support to Aviation

- Enables three-dimensional position determination for all phases of flight from departure, en route, and arrival, to airport surface navigation
- NextGen would replace radar tracking with GPS; allow more direct routing that would save time and fuel, and provide more precise data about the distance of one plane from another (Washington Post, 12 Sep 2012)
- Allows more aircraft to fly more favorable and efficient routes, saving time, fuel, and increasing cargo revenue
- Enhanced Ground Proximity Warning System (EGPWS)
 that has proven successful in reducing the risk of
 Controlled Flight into Terrain

GPS Support to Railway

- Reduces accidents, delays, and operating costs, while increasing track capacity, customer satisfaction, and cost effectiveness
- More accurate information on train arrivals
- Automates track inspection systems that work faster and detect more defects than human crews
- Researchers exploring ways to integrate GPS into vehicle-to-vehicle communication systems that could warn trains and cars of potential collisions at railroad crossings.

GPS Support to Maritime Operations

- Search and rescue
- Underwater surveying, buoy placement, and navigational hazard location and mapping.
- Navigate to optimum fishing locations, track fish migrations, and ensure compliance with regulations
- Management of maritime port facilities.
- GPS technology, coupled with geographic information system (GIS) software, is key to the efficient management and operation of automated container

GPS Use in Public Safety/Disaster Relief

- Critical component of modern emergency response systems
 - Saves time during search and rescue operations
 - Coupled with geographic information system (GIS), and remote sensing technology, provides ability to create maps of the disaster areas for rescue and aid operations, as well as to assess damage
 - 2004 , Indian Ocean tsunami
 - 2005, Hurricanes Katrina and Rita, and Pakistan-India earthquake
 - During wildfires, aircraft combine GPS working with infrared scanners to identify fire boundaries and "hot spots
 - Precise location of police, fire, and rescue vehicles; reduces response times
 - Ground and maritime vehicles equipped with autonomous crash sensors and integrated with automatic comms, can rapidly call for help and locate crash site

Security GPS Support to Other Infrastructure

- Timing crucial to a variety of economic activities
- Communication systems, electrical power grids, and financial networks all rely on precision timing for synchronization and operational efficiency
- Wireless telephone/data networks use GPS time to keep all base stations in perfect synchronization
- Power companies and utilities have fundamental requirements for time and frequency to enable efficient power transmission and distribution

- Major investment banks use GPS to synchronize their network computers located around the world
- Companies worldwide use GPS to time-stamp business transactions to accurately maintain records synchronized
- Distributed networks of instruments that must work together to precisely measure common events i.e. seismic monitoring

GPS Critical Infrastructure Timing Study

- GPS use & dependence for timing is growing
- Of the 18 CIKR sectors, 16 use GPS timing synchronization in operating and supporting systems
- Major uses of GPS timing include:
 - Network and phase synchronization in wireline and wireless networks
 (Communications/IT Sectors) used by multiple critical infrastructures
 - Precise frequency generation and stabilization for single frequency wireless networks (LMR simulcast)
 - Phase synchronization in Electric Power, Nuclear Power, and Dams/Hydroelectric power sectors/subsectors
 - Process scheduling, control, and synchronization in Oil and Natural Gas/Chemical/Critical Manufacturing/DIB sectors
 - Precise time stamping of data, transactions/high-frequency trading in Banking & Finance/Postal and Shipping sectors
- In general, GPS timing is used in distributed interconnected systems that require synchronization for monitoring, control, production, transaction tracking, and other similar functions

Homeland Security GPS Timing Usage by CIKR Sectors

CIKR Sector	Uses GPS Timing?		
	Yes	No	
Communications Sector	X		
Emergency Services Sector	X		
Information Technology Sector	X		
Banking & Finance Sector	X		Summary
Healthcare & Public Health Sector	X		Summary 15 of the18 CIKR Sectors
Energy/Electric Power and Oil & Natural Gas SubSector	X		
Nuclear Sector	X		have some
Dams Sector	X		dograp of
Chemical Sector	X		degree of
Critical Manufacturing	X		GPS timing usage
Defense Industrial Base Sectors	X		
Postal & Shipping Sector	X		
Transportation Sector	X		
Government Facilities Sector	X		
Commercial Facilities Sector	X		
National Monuments and Icons Sector		X	
Agriculture and Food Sector		X	
Water and Wastewater Sector		X	

Risks/Threats to the GPS Signal

Unintentional

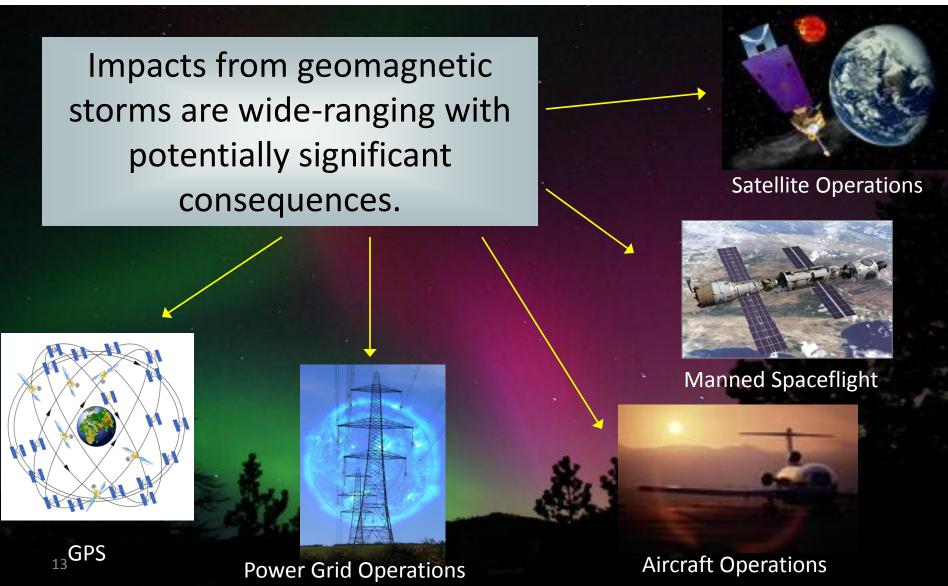
❖ Interference: Includes out-of-band emissions from other radio sources or in-band emissions from other systems, such as, for example, other satellite navigation systems

Intentional

- Jamming: The deliberate drowning out of legitimate Positioning, Navigation, and Timing, and Frequency (PNTF) signals using higher power signals to cause loss of satellite lock and to prevent reacquisition
- Spoofing: The deliberate emitting of legitimate-appearing false signals to shift the computed position or time of a victim's receiver

Naturally Occurring

Space Weather: Variable conditions on the Sun and the space environment that can influence the performance and reliability of space and ground based systems.


Communications Act of 1934

- Federal law prohibits the marketing, sale, or use of a transmitter designed to block, jam, or interfere with cellular and Personal Communication Services, police radar, Global Positioning Systems, and wireless networking services.
 - Section 301 requires persons operating or using radio transmitters to be licensed or authorized under the Commission's rules (47 U.S.C. § 301)
 - Section 302(b) prohibits the manufacture, importation, marketing, sale or operation of these devices within the United States (47 U.S.C. § 302a(b))
 - Section 333 prohibits willful or malicious interference with the radio communications of any station licensed or authorized under the Act or operated by the U.S. Government (47 U.S.C. § 333)

For more information: http://www.fcc.gov/encyclopedia/jammer-enforcement

Geomagnetic Storm Impacts are Wide Ranging

Questions?