GPS Program Update

2010 International Symposium on GPS/GNSS

Robert M. Hessin
Deputy Director
National Space-Based PNT Coordination Office

October 26, 2010
GPS Constellation Status

31 Operational Satellites
(Baseline Constellation: 24)

- 11 Block IIA
- 12 Block IIR
- 7 Block IIR-M
 - Transmitting new second civil signal
- 1 GPS IIR-M in on-orbit testing
- 1 Block IIF launched May 27th, 2010
 - First of 12 Block IIF satellites
- 3 additional satellites in residual status
- Global GPS civil service performance commitment met continuously since December 1993
GPS Modernization Program

Block IIA/IIR
- Basic GPS
 - Standard Service
 - **Single frequency (L1)**
 - Coarse acquisition (C/A) code navigation
 - Precise Service
 - Y-Code (L1Y & L2Y)
 - Y-Code navigation

Block IIR-M, IIF
- IIR-M: IIA/IIR capabilities plus
 - 2nd civil signal (L2C)
 - M-Code (L1M & L2M)
- IIF: IIR-M capability plus
 - 3rd civil signal (L5)
 - Increased robustness
 - Aviation Safety

Block III
- Backward compatibility
- 4th civil signal (L1C)
- Increased accuracy
- Assured availability
- Navigation surety
- Controlled integrity
- Increased security
- System survivability

Increasing System Capabilities with Increasing Defense / Civil Benefit
GPS Modernization – New Civil Signals

- **Second civil signal “L2C”**
 - Designed to meet commercial needs
 - Higher accuracy through ionospheric correction
 - Available since 2005 without data message
 - **Currently, 7 IIR-Ms transmitting L2C**
 - After 2020 with L2C and L5 online, the USG will no longer support semi-codeless access to military GPS signals
 - Full capability: 24 satellites ~2016

- **Third civil signal “L5”**
 - Designed to meet demanding requirements for transportation safety-of-life
 - Uses highly protected Aeronautical Radio Navigation Service (ARNS) band
 - On orbit broadcast 10 APR 2009 on IIR-20(M) secured ITU frequency filing
 - **Operational on 1st IIF (SVN-62)**
 - Full capability: 24 satellites ~2018/19
• **Fourth civil signal “L1C”**
 - Designed with international partners for interoperability
 - Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
 - Specification developed in cooperation with industry recently completed
 - Launches with GPS III in 2014
 - On 24 satellites by ~2021
GPS III

- **Newest block of GPS satellites**
 - First satellite to broadcast common L1C signal
 - Multiple civil and military signals; L1 C/A, L1 P(Y), L1M, L1C, L2C, L2 P(Y), L2M, L5
 - More robust Earth coverage performance
 - Three Rubidium clocks

- **Completed Critical Design Review for Block IIIA**
 - Two months in advance

- **Completed Delta System Requirements Review for Block IIIB**

- **Conducting Analysis of Alternatives for Blocks IIIB and IIIC**
• Architecture Evolution Plan (AEP)
 - Transitioned in 2007
 - Increased worldwide commanding capability
 - Increased capacity for monitoring of GPS signals
 - Modern distributed system replaced 1970s mainframes
 - Current software version (5.5D) enabled SAASM functionality

• Next Generation Control Segment (OCX)
 - Controls more capable constellation, and monitors all GPS signals
 - $1.5B contract awarded 25 February 2010
 - Capability delivered incrementally to reduce risk
 - On track for Preliminary Design Review in ~April 2011
 - Full Capability by ~2016
SPS Signal in Space Performance

<table>
<thead>
<tr>
<th>Year</th>
<th>Signal-in-Space User Range Error (URE) (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>N/A</td>
</tr>
<tr>
<td>1992</td>
<td>N/A</td>
</tr>
<tr>
<td>1994</td>
<td>N/A</td>
</tr>
<tr>
<td>1996</td>
<td>N/A</td>
</tr>
<tr>
<td>1997</td>
<td>N/A</td>
</tr>
<tr>
<td>2001</td>
<td>1.6</td>
</tr>
<tr>
<td>2004</td>
<td>1.2</td>
</tr>
<tr>
<td>2006</td>
<td>1.1</td>
</tr>
<tr>
<td>2008</td>
<td>1.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.9</td>
</tr>
</tbody>
</table>

2001 SPS Performance Standard (RMS over all SPS SIS URE)

2008 SPS Performance Standard (Worst of any SPS SIS URE)

Signal-in-Space User Range Error is the difference between a GPS satellite’s navigation data (position and clock) and the truth, projected on the line-of-sight to the user.

System accuracy exceeds published standard

Selective Availability (SA)
Summary

- Constellation is aging, but healthy
 - Air Force confident in sustainment plan
- GPS Modernization is on track
 - GPS III progressing ahead of schedule
 - Better capability for GNSS users worldwide
- U.S. Government has provided continuous GPS service since 1993
 - System Performance is better than ever and exceeds published standards
Robert M. Hessin
Deputy Director
National Space-Based PNT Coordination Office
1401 Constitution Avenue, Suite 6822
Washington, D.C. 20230
202-482-5809 (office)
Robert.hessin@pnt.gov