National Position Navigation
and Timing Architecture

APEC GNSS Innovation Summit

Karen Van Dyke, DOT/RITA/Volpe Center

May 26-28, 2008
Overview

• PNT Architecture Background
• Architecture Development
• Vision, Strategy, and Vectors
• Way Forward
PNT Architecture Background

• Study requested by
 – Assistant Secretary of Defense for Networks and Information Integration
 – Under Secretary of Transportation for Policy
 – National Space-based PNT Executive Committee

• Justification - PNT Strategic Landscape is Changing
 – Gaps in current capabilities
 – Insufficient unity of effort towards future PNT capabilities

• Products
 – 20 year strategic outlook to guide near and mid-term decisions on PNT capabilities
National PNT Strategy Needed

- **Develop a Comprehensive PNT Architecture**
 - DSB Task Force on GPS Oct-2005
 - JROCM 187-06 Sep-2006
 - NSS Program Assessment Mar-2005
 - DoD PNT S&T Roadmap Apr-2006

- **Develop a Comprehensive National PNT Architecture**
 - Volpe GPS Vulnerability Sep-2001
 - Nat’l Approach to Aug. GPS Dec-1994
 - Civil AoA Briefing May-2005
 - Radionav Sys. Task Force Jan-2004

- **Conduct a Comprehensive Analysis of GPS Backup Navigation & Precision Timing Options**
 - DoD PNT S&T Roadmap Apr-2006
 - NSS Program Assessment Mar-2005

- **JROC Approves the PNT JCD & Validates the Five Gaps Identified**
 - DSB Task Force on GPS Oct-2005
 - JROCM 187-06 Sep-2006

- **Develop a Comprehensive PNT Architecture**
 - NSS Program Assessment Mar-2005

- **Determines the optimal integrated system for meeting requirements of Federal users**
 - JROCM 187-06 Sep-2006

- **Periodically Evaluate Radionavigation System Contributions to the Overall Mix**
 - NSS Program Assessment Mar-2005

- **Validate GPS Requirements vs. PNT Requirements**
 - JROCM 187-06 Sep-2006

- **Conduct a Comprehensive Analysis of GPS Backup Navigation & Precision Timing Options**
 - NSS Program Assessment Mar-2005

- **JROC Approves the PNT JCD & Validates the Five Gaps Identified**
 - JROCM 187-06 Sep-2006

- **Develop a Comprehensive National PNT Architecture**
 - NSS Program Assessment Mar-2005

- **Determine the optimal integrated system for meeting requirements of Federal users**
 - JROCM 187-06 Sep-2006
Foundations

RITA
FAA
JPDO
FHWA
FRA
DOC
NIST
DHS
USCG
DOI
State
NASA
NCO

ASD/NII Memo 23-Jan-2006

“NSSO develop a National PNT Architecture”

DOT/RITA Memo 14-Mar-2006

“RITA will lead effort on behalf of DOT for the civil community”

NPEC Action Items 26-Jan-2006

“NPCO will initiate an effort with NSSO”

PNT Architecture TOR 11-Jul-2006

More Effective & Efficient PNT and an Evolutionary Path for Government Provided Systems & Services
National PNT Architecture Scope

<table>
<thead>
<tr>
<th>USERS</th>
<th>DOMAIN</th>
<th>MISSIONS</th>
<th>SOURCES</th>
<th>PROVIDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military</td>
<td>Space</td>
<td>Location Based Services, Tracking, Survey, Scientific, Recreation, Transportation, Machine Control, Agriculture, Weapons, Orientation, Communications and Timing</td>
<td>GNSS, GNSS Augmentation</td>
<td>Military</td>
</tr>
<tr>
<td>Homeland Security</td>
<td>Air</td>
<td></td>
<td>Terrestrial NAVAIDS</td>
<td>Civil</td>
</tr>
<tr>
<td>Civil</td>
<td>Surface</td>
<td></td>
<td>Onboard / User Equip Networks</td>
<td>Commercial</td>
</tr>
<tr>
<td>Commercial</td>
<td>Sub-Surface</td>
<td></td>
<td></td>
<td>International</td>
</tr>
<tr>
<td>Individual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Broad Scope Requires Innovative Approaches and Focused Analysis Efforts
"As-Is" PNT Architecture Graphic (2008)
Primary PNT Gaps

• Gaps primarily drawn from military’s PNT Joint Capabilities Document, with additions and modifications from parallel civil community documents and discussions
 – Physically Impeded Environments
 – Electromagnetically Impeded Environments
 – Higher accuracy with integrity
 – Hazardously Misleading Info (Integrity)
 – High Altitude/Space Position and Orientation
 – Geospatial information - access to improved GIS data (regarding intended path of travel)
 – Insufficient modeling capability
Primary Objective of the Architecture

“…provide more effective and efficient PNT capabilities focused on the 2025 timeframe and an evolutionary path for government provided systems and services.” -- Terms of Reference
Framework to describe user needs & environments, and which users are affected by each capability gap
Cumulative Process

Data Gathering

- PNT User Perspectives (2020)
- PNT User Perspectives (2020)

Needs & Gaps

- Functional Reference Model
- Environment, Technology & Evolved Baseline
- PNT Evolved Baseline (2020)

Concept Development

- Guiding Principles
 - VISION: US Leadership in Global PNT
 - STRATEGY: Greater Common Denominator
 - PRIMARY VECTOR: Multiple Phenomenologies
 - PRIMARY VECTOR: Interoperability Solutions
 - SUPPORTING VECTOR: Fusion of PNT with Communications
 - SUPPORTING VECTOR: Cooperative Organizational Structures

Trade Space, Features & Architectures

- Example RA: Dependent Terrestrial
- Example RA: PNT Architecture Example

Analysis & Assessment

- Analytical Framework

Community Involvement

- Architecture Development Team, Subject Matter Experts, Small Working Groups & Industry

Environment, Technology & Evolved Baseline

- Community Involvement
 - Architecture Development Team, Subject Matter Experts, Small Working Groups & Industry

Analytical Framework
Related Efforts & National Decisions

- Recent & Upcoming Decisions
 - Future of eLORAN
 - Future of NDGPS and High Accuracy NDGPS
 - Backup SATNAV Tasking
 - Backup PNT Needs (ADS-B, NGATS, Timing Infrastructure)
 - GPS III and OCX Acquisition Strategies

National PNT Architecture

- Joint Planning & Development Office
 - Next Generation Air Transportation System
 - SatNav Backup Study

- DOT and FAA
 - Aviation Navigation Evolution Roadmap
 - GPS Evolutionary Architecture Study

- National Space-Based PNT Coordination Office
 - 5-Year Plan & Assessment

- USSTRATCOM
 - PNT Joint Capabilities Document
 - PNT Functional Solutions Analysis

- DARPA
 - Focused PNT Technical Challenges

- RAND
 - Ensuring Effective PNT

- DHS/USCG
 - Timing Criticality Study

- NSSO
 - NSS Program Assessment
 - NSS Plan

- DOD
 - DOD PNT S&T Roadmap update

- Joint Planning & Development Office
 - Next Generation Air Transportation System
 - SatNav Backup Study

- DOT and FAA
 - Aviation Navigation Evolution Roadmap
 - GPS Evolutionary Architecture Study

- National Space-Based PNT Coordination Office
 - 5-Year Plan & Assessment

- USSTRATCOM
 - PNT Joint Capabilities Document
 - PNT Functional Solutions Analysis

- DARPA
 - Focused PNT Technical Challenges

- RAND
 - Ensuring Effective PNT

- DHS/USCG
 - Timing Criticality Study

- NSSO
 - NSS Program Assessment
 - NSS Plan

- DOD
 - DOD PNT S&T Roadmap update

- Joint Planning & Development Office
 - Next Generation Air Transportation System
 - SatNav Backup Study

- DOT and FAA
 - Aviation Navigation Evolution Roadmap
 - GPS Evolutionary Architecture Study

- National Space-Based PNT Coordination Office
 - 5-Year Plan & Assessment

- USSTRATCOM
 - PNT Joint Capabilities Document
 - PNT Functional Solutions Analysis

- DARPA
 - Focused PNT Technical Challenges

- RAND
 - Ensuring Effective PNT

- DHS/USCG
 - Timing Criticality Study

- NSSO
 - NSS Program Assessment
 - NSS Plan

- DOD
 - DOD PNT S&T Roadmap update

MAINTAIN SHARED SITUATIONAL AWARENESS
Guiding Principles

VISION
US Leadership in Global PNT

STRATEGY
Greater Common Denominator

PRIMARY VECTOR
Multiple Phenomenologies

PRIMARY VECTOR
Interchangeable Solutions

SUPPORTING VECTOR
Synergy of PNT with Communications

SUPPORTING VECTOR
Cooperative Organizational Structures
National PNT Architecture Vision

US Leadership in Global PNT

• National PNT Architecture based on policy foundation set by 2004 Presidential Policy Directive on Space-Based PNT
• Efficiently (cost, schedule, acceptable risks, user impact) develop and field the best technologies and systems
• Promulgate stable policies (commitment to funding, commitment to performance, advanced notice of change, etc)
• Foster innovation through competition within the commercial sector
• Ensure robust and enduring inter-agency coordination and cooperation
• Maximize the practical use of military, civil, commercial and foreign systems and technologies
• Judiciously develop and apply standards and best practices
National PNT Architecture Strategy

The US can Best Achieve Efficiency and Effectiveness through a Greater Common Denominator Approach

• Satisfy common needs with common solutions
• Promulgate a predominantly “dependent” architecture where users rely upon external sources
• Leverage ongoing US GNSS modernization to assure global service and support national interests
• Promote adoption of low-burden “autonomous” features for robustness
• Specialized needs still require specialized solutions
• Balance provided or enabled capabilities with the need for a military PNT advantage
“Should-Be” PNT Architecture Graphic (2025)

Synergy of PNT and Communications

Interchangeable Solutions

Multiple Phenomenologies

ENABLERS & INFRASTRUCTURE

Standards Reference Frames Cryptography Science & Technology USNO NIST NGA NGS
Star Catalogs Launch Modeling Mapping/Charting/Geodesy Laser Ranging Network

Cleared for public release, distribution unlimited; SAF/PA case 2007-0613, 20 Sep 07
Next Steps

• NSSO, RITA & NII oversee development of detailed transition and implementation planning

• Hold Workshop to Obtain Industry Feedback on Recommendations When Publicly Released

• Architecture Implementation Memorandum
 – Approved event-based implementation timeline

• Influence update to PNT planning documents
 – Federal Radionavigation Plan
 – Five-Year National Space-Based PNT Plan
BACKUPS
Purpose of NSSO Architectures

• Enterprise Level Guidance
 – High Level Capabilities
 – Fundamental Processes
 – Organizations
 – Infrastructure

• Similar to City Planning
 – Considerations for how people, buildings, transportation, utilities work together
 – Effect of External Factors (e.g., weather, state jurisdiction, etc.)
 – Objective is not to design all the buildings
 – May conduct detailed design of some elements, primarily to gain understanding of higher level issues
Functional Reference Model

PTO: Position, Time and/or Orientation (including the time derivatives)
Concept Development

PNT Architecture Trade Space

- **Source Location** (of the service provider)
 - **Terrestrial**: concept provides service from, near, or beneath the surface of the earth
 - **Space**: concept provides service from space

- **Service Volume** (of the service provided)
 - **Local**: concept provides a meaningful service only at a fixed point
 - **Interplanetary**: concept provides a meaningful service throughout the solar system

- **Autonomy** (of the user)
 - **Dependent**: concept requires frequent refresh of information from external sources to provide a meaningful service
 - **Autonomous**: concept, once initialized, is self-contained and requires no refresh of information from external sources to provide a meaningful service
PNT Representative Architectures (RA)

0: Evolved Baseline
1: Dependent Terrestrial
2A: Combined GNSS Constellations
4: Network Aiding of GNSS
5: Aided Autonomous Sensors and Aiding Sources
6: Highly Autonomous

RA0 = EBL (Point of Departure)

RAs ARE NOT FINAL SOLUTIONS – THEY ARE USED TO GAIN INSIGHTS TOWARDS FINAL RECOMMENDATIONS
From Representative Architectures … to Recommendations

- Preliminary Analysis (Feb - Mar 07)
- Cost and Performance Analysis (Apr - Jul 07)

Representative Architectures

Hybrid Architectures

Should Be Architecture
- Recommendations
- Guidance
- Decision Criteria
Three Themes (Hybrid Architectures)

Hybrid A
- Common solutions for many users
- Horizontal integration
- Greatest common denominator
- Emphasis on global and long range broadcasts direct to users

Hybrid B
- Common solutions for many users
- Horizontal integration
- Greatest common denominator
- Emphasis on networks

Hybrid C
- Specialized solutions for each user group
- Vertical integration
- Least common denominator
- Emphasis on autonomous solutions
These features should be hybrid cornerstones:

- EBL Enablers
- GIS Data
- US GNSS
- Ground Based PNT
- Network

- INS
- Clock
- Stars
- Accuracy Augment
- Integrity Augment

These features/systems can contribute to covering primary PNT gaps; those which help the most, or which help to cover multiple gaps, should be included in hybrids:

- More Power
- Reduced Age of Data
- More Satellites
- LF/ELF PNT
- Network Aiding
- INS
- Multi Sensor Integration
- Topo Sensors
- “Here” Beacons
- Signal Diversity
- Redundancy
- Comm
- Higher Freq
- Cell Network
- Clock
- Signals of Opportunity
- Frequent Calibration
- MultiLat Beacons
- Stars

Version 18 Jul 07
Cornerstone Features:

Primary Gaps

<table>
<thead>
<tr>
<th>Category</th>
<th>Features</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM Impeded–Unintentional</td>
<td>EBL Enablers, Signal Diversity, More Power</td>
<td>LF/ELF PNT, Network Aiding, Cell Network, INS Clock, Multi Sensor Integration, Signs Of Opportunity, "Here" Beacon, MultiLat Beacon</td>
</tr>
<tr>
<td>EM Impeded–Intentional</td>
<td>EBL Enablers, Signal Diversity, More Power</td>
<td>LF/ELF PNT, Network Aiding, Cell Network, INS Clock, Multi Sensor Integration, Signs Of Opportunity, "Here" Beacon, MultiLat Beacon</td>
</tr>
<tr>
<td>Higher Accuracy with Integrity</td>
<td>EBL Enablers, Reduced Age of Data, Redundancy</td>
<td>LF/ELF PNT, Network Aiding, Cell Network, INS Clock, Multi Sensor Integration, Signs Of Opportunity, "Here" Beacon, MultiLat Beacon</td>
</tr>
<tr>
<td>Hazardously Misleading Info</td>
<td>EBL Enablers, Reduced Age of Data, Redundancy</td>
<td>LF/ELF PNT, Network Aiding, Cell Network, INS Clock, Multi Sensor Integration, Signs Of Opportunity, "Here" Beacon, MultiLat Beacon</td>
</tr>
<tr>
<td>Hi-Altitude Pos. & Orientation</td>
<td>EBL Enablers, More Satellites</td>
<td>LF/ELF PNT, Network Aiding, Cell Network, INS Clock, Multi Sensor Integration, Signs Of Opportunity, "Here" Beacon, MultiLat Beacon</td>
</tr>
<tr>
<td>Access to Geospatial Data</td>
<td>EBL Enablers, GIS Data, More Satellites</td>
<td>LF/ELF PNT, Network Aiding, Cell Network, INS Clock, Multi Sensor Integration, Signs Of Opportunity, "Here" Beacon, MultiLat Beacon</td>
</tr>
</tbody>
</table>

Selected features that can contribute to covering gaps

- EBL Enablers
- GIS Data
- More Satellites
- LF/ELF PNT
- Network Aiding
- Cell Network
- INS Clock
- Multi Sensor Integration
- Signs Of Opportunity
- "Here" Beacon
- MultiLat Beacon
- More Power
- Signal Diversity
- Reduced Age of Data
- Redundancy
- Higher Freq
- Frequent Calibration