

GPS Policy & Plans

28 April 2004

David A. Turner IGEB Executive Secretariat

- Background & Policy
- System Status & Modernization
- IGEB Projects
- Summary

System Status & Modernization

Background & Policy

IGEB Projects

GPS Background

- Active program for 30 years
 - Created from separate programs in 1973
 - Developmental satellites began launch in 1978; operational satellites in 1989
 - Initial Operational Capability in 1993; Full Operational Capability in 1995
- Designed as a dual-use system
 - Military applications for US and Allied use
 - Civilian applications for worldwide use
- Consistent U.S. National Policy from both Executive and Legislative branches
 - Presidential Decision Directive March 1996
 - U.S. Public Law December 1997
- IGEB to manage GPS as a national asset -- increases user trust in GPS as a dual-use system

Policy Principles

- No direct user fees for civil GPS services
- Protect the current radionavigation spectrum from disruption and interference
- Open public signal structure for all civil services
 - Promotes equal access for user equipment manufacture, applications development and valueadded services
 - Ensures open market driven competition
- Use of GPS time, geodesy, and signal standards
- Global compatibility & interoperability of future systems with GPS
- Recognition of national and international security issues and protecting against misuse

International Cooperation Summary

- U.S. goals
 - Support GPS Policy Principles
 - Promote Peaceful Civil, Commercial, & Scientific Uses of GPS Worldwide
- US is continuing to work with interested nations on the adoption of safety-of-life augmentations
- US is cooperating with Japan in developing the QZSS under the auspices of the 1998 US-Japan Joint Statement
- No recent discussions with Russia
- Negotiations with the European Commission on Galileo continue
 - Tentative agreement reached on signal structures compatible with National Security
 - Other contentious issues are being addressed and an overall cooperative agreement is nearing completion

Compatibility/Interoperability GPS and QZSS

- Common standards
 - System plans to use GPS L1, L2, and L5 civil signal structures (but probably not L1 C/A-code)

- Control segment linkages to be discussed

- QZSS will improve performance in urban canyons and mountainous regions
- Joint Japan-U.S. Technical Working Group has been established

Compatibility/Interoperability GPS and Galileo

- Two independent systems
 - Compatibility is essential
 - Interoperability is achievable at the user level
 - Different coordinate reference systems but within ~ 2 cm
 - Different system times but with broadcast corrections
 - Different signal structures but with two shared frequencies
- U.S. Goal is to provide the greatest possible benefit to the largest number of users
 - Simplified, inexpensive receivers
 - Increased availability (greater number of satellites in view)

U.S. & Europe have agreed to a common baseline L1 open civil signal that can become a global standard and is compatible with national/allied/NATO security

Background & Policy

System Status & Modernization

Summary

Constellation Performance January 1-September 11, 2002

Specification values from the Standard Positioning Service Performance Standard, October, 2001

PDOP Availability

Specification - PDOP of 6 or Less, 98% of the time Actual - 99.9%

Horizontal Service Availability

Specification - 95% Threshold of 36 meters, 99% of the Time Actual – 3.53 meters

Vertical Service Availability

Specification - 95% Threshold of 77 meters, 99% of the Time or Better Actual – 5.01 meters

User Range Error

Specification - 6 meters or Less, Constellation Average Actual - 1.43 meters

System accuracy and availability far exceed current specifications, but not current requirements

Why Modernize

- For civil users, new signals provide:
 - More robustness against interference
 - Compensation for ionospheric delays
 - Wide-laning/tri-laning -- Resolves integer ambiguities caused by cycle slips during precise carrier phase measurements
- For military users, new spectrally separated signals provide:
 - Protection of friendly use
 - Prevention of adversary exploitation
 - Preservation of civil use outside area of operations
- For both civil/military, system improvements in accuracy, availability, integrity, and reliability

L2 Civil (L2C) Signal

- Benefits of L2C versus L2 C/A
 - Overcomes some limitations of L1 C/A
 - Improved Tracking Capability (~ 3dB higher)
 - Better Cross Correlation Protection due to longer codes
 - Two Codes Separated by time (e.g. TDMA)
 - Improved data structure for enhanced data demodulation (5 dB better than C/A)
 - Coherent carrier component favored for high precision applications – longer integration possible
 - Improved protection against continuous wave (CW) interference

Third Civil Signal (L5)

- New signal structure for enhanced performance
 - ~ 6 dB Higher power relative to L1 (minus 154-155 dBW)
 - 20 MHz (minimum) broadcast bandwidth
 - Longer code
 - Higher chipping rate

Ground Control Modernization

- Upgrade monitor stations and ground antennas with new receivers and computers
- Replace existing Master Control Station mainframe computer with a distributed architecture
- Add Accuracy Improvement Initiative
- Build fully mission capable Alternate Master Control Station (AMCS)
- Add IIF command and control functionality
- Add direct civil code monitoring

GPS III Civil Goals

- Significant increase in system accuracy
- Assured and improved level of unaugmented integrity
- Improved availability of accuracy with integrity
- Backward compatibility with existing receivers
- FOC for new civil signals in combination with IIR-M & IIF satellites
- Smooth transition from GPS Block II to Block III

Background & Policy

IGEB Projects

System Status & Modernization

Summary

Interagency GPS Executive Board

IGEB STRUCTURE

GPS STEWARDSHIP FUND

- Selection criteria for Agency-proposed projects:
 - Clear, national-level benefit
 - Priority to projects reflecting dual-use nature of GPS
 - Expenditures must fall outside normal agency budgets and benefit two or more IGEB member agencies
 - Agency Cost Sharing is encouraged

Stewardship Funds Currently Support Several Projects Important to GPS Modernization

L1 Civil Signal Modernization

- Joint military and civil study to assess the benefits of an additional civil signal at L1, known as L1C
 - L1 C/A will continue to transmit indefinitely
- Outreach to GPS community to determine needs and requirements
 - Feedback will be documented and form basis of signal design
- Potential benefits are significant
 - Increased robustness and potentially accuracy for civil users
 - Complementary to modernized GPS L2C and L5 signals
 - Compatible with next generation Galileo and QZSS

For additional information contact: L1C_GPS@USGS.gov

Civil GPS PNT Analysis of Alternatives (AoA)

- In general an AoA provides a reliable, objective assessment of the options for meeting user needs
- For GPS will provide the tools to effectively identify and validate <u>GPS</u> requirements vs. PNT requirements
 - Effectiveness and Cost Analysis to compare the allocation of systems
 - GPS Signal from Space
 - Augmentations
 - User Equipment
 - Other Systems or Operational Procedures

Civil Signal Monitoring

Global Dual Monitoring System (GDMS) Study

- Explore use of existing resources
- Identify Performance Measures
- Develop architecture and algorithms
- Demonstrate data collection and processing
- Modernized Monitor Station Receiver Element (MMSRE) – civil component
 - First Full Monitoring of Civil Signals by the GPS Master Control Station from 5 Air Force Monitoring Stations
 - Improved Civil Signal Accuracy
- GDGPS
 - Explore the feasibility of using the NASA differential GPS network (a subset of the IGS network) as an integrity monitor

Background & Policy

System Status & Modernization

Interagency Projects

SUMMARY

- Consistent GPS Policy combined with a dual-service system exceeding performance standards has resulted in tremendous benefits to civilian and military users
- Modernization is underway to steadily improve both civil and military services
 - New signals are the primary focus of civil GPS modernization
 - Several IGEB-funded projects are underway that should make important contributions to modernization
- Encouraged that GPS/Galileo should be compatible and interoperable
 - Greater satnav capabilities for civil users worldwide
 - Spectral separation of civil and military GNSS signals facilitates preservation of peaceful civil use

IGEB Executive Secretariat

U.S. Department of Commerce Herbert C. Hoover Bldg. Washington, D.C. 20230 Phone: (202) 482-5809 Email: ExecSec@igeb.gov www.igeb.gov