Judith Olson, PhD

 ColdQuanta atomic clocks division lead, senior physicist

ColdQuanta

Making Quantum Matter.

Quantum-enabled PNT technologies for the future

- A focus on next-generation, deployable atomic clocks -

November 16, 2022

27th Annual National Space-Based PNT Advisory Board

© 2022 ColdQuanta, Inc.

Quantum Technologies for Space PNT

- You already use quantum tech!
 - Atomic clocks*
- You'll be using more quantum tech in the future too!
 - Quantum sensors
 - Radio frequency (RF) receivers*
 - Inertial navigation*
 - Quantum computing* and emulation*
 - Optical communications receivers and emitters

*ColdQuanta has dedicated research and product groups for each of these areas!

Quantum clocks

- You already use quantum tech! (atomic clocks)
- Many quantum systems rely on *quantized energy levels* of atoms and molecules

Atomic clocks have come a long way!

- Quantum understanding unlocked new 'quantum tools' for atomic clocks to improve \rightarrow optical atomic clocks
 - Advanced lasers and electro-optics
 - Optical frequency combs

(Sr Lattice Clock Transition Diagram)

Why clocks are going optical

• Optical clocks are the future of timekeeping

(Plot from NASA Cold Atoms in Space Workshop 2022 publication)

 $\frac{Timing}{uncertainty} = \sigma_y \propto \frac{\delta f}{f}$

Optical atomic clocks have inherent advantages over microwave clocks:

- ~10,000 x immediate improvement from optical frequencies
- Multiple narrow (<= 1 Hz) optical transitions in a variety of atomic species
- Smaller physics packages possible w/o RF resonators or free-fall regions

Commercial vs future clocks

Cost, Size, Weight, and Power = C-SWaP

• Optical clocks are a game changer!

Bringing optical clocks out of the lab

- Transferring or utilizing optical clock signals is difficult
 - Free space over long distance w/ turbulent atmosphere
 - New tools are in development and moving fast!

- Environmental susceptibility
 - Atoms make good sensors -> they are sensitive
 - Some clocks are less sensitive than others
 - High-performance commercial clocks often need an environmental chamber to operate at specification

Where ColdQuanta is pushing optical clocks

Plots from Schmittberger and Scherer (MITRE) 2020

Uses for next-gen clocks like ColdQuanta's

- Ultra-low phase noise applications
 - Synthetic aperture radar
 - Optical communications
 - Encryption/security
- Ultra-long holdover applications
 - GPS-denied timing operation for days or weeks
- Ultra-stable timing frequencies
 - Beyond-GPS location accuracy
 - Geodesy
 - Gravimetry

Quantum Opportunities for Space PNT

• RF sensing

- Ultra-sensitive and much smaller
- Inertial measurement
 - Accelerometers, gyros,
- Quantum computing/emulation
 - Advanced material development
 - Massive logistics optimization
- Atomic clocks
 - Environmentally ruggedized, maser-like performance with extended holdover in a dramatically reduced package size.

If interested in learning more or collaborating on future work, contact:

General Inquiries:

<u>Max.Perez@coldquanta.com</u>

Atomic clocks

• Judith.Olson@coldquanta.com

RF Sensing

• <u>William.Clark@coldquanta.com</u>

