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• Significantly improves real-time navigation 

performance (from km-class to meter-class)

• Supports quick trajectory maneuver recovery (from 5-

10 hours to minutes)

• GNSS timing reduces need for expensive on-board 

clocks (from $100sK-$1M to $15K-$50K)

• Supports increased satellite autonomy, lowering 

mission operations costs (savings up to $500-

$750K/year)

• Enables new/enhanced capabilities and better 

performance for High Earth Orbit (HEO) and 

Geosynchronous Earth Orbit (GEO) missions
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Benefits of GNSS Use in Space
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Active Space Use Cases

Earth Sciences Launch Vehicle Range Ops Attitude Determination

Real-Time On-Board NavTime Synchronization Precise Orbit Determination
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Space Use Case Example: AFTS
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Autonomous Flight Termination (AFTS) concept

• Independent, self-contained subsystem onboard launch vehicle that 

automatically makes flight termination / destruct decisions

• Box on the vehicle (AFTU)

• Tracking from GPS and INS sensors

• Rule set built in pre-flight period; rule violation terminates flight

• Radar and command stations recede into the past

• Telemetry down-link drops from safety critical to situational awareness, 

post-flight, and mishap investigation

Development

• NASA wrote original AFTS Core Autonomous Safety Software (CASS), 

USAF rewrote to make it safety critical and distributes to users via SUA 

within ITAR

• NASA KSC wrote example AFTS wrapper software, released as Class E 

software within ITAR, will release as Class B after IV&V

• NASA KSC released hardware design reference via commercialization 

office to Range Users within ITAR
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Kennedy Space Center AFTS Flight Tests

Ashman PNT AB 11.20.19

• DARPA initiated partnership with NASA on a low cost, 

flight demo to flight test KSC's AFTS Reference Design 

Hardware

• demonstrated AFTS system (with validated CASS 
SW)

• doesn’t require traditional 30th or 45th Range 
support for vehicle tracking and command destruct

• DARPA funded, NASA AFTS payload launched on 

Rocket Lab’s Electron Launch Vehicle from New 

Zealand in May 2017

• Three certification Rocket Lab flights been completed

• NASA AFRC purchased 6 units

• First launch using the DARPA/NASA AFTU for primary 

operations is scheduled for Nov 25

• Several launch vehicles have baselined NASA AFTS 

units into their vehicles for future operational useRocket Lab Electron Launch
UP Aerospace Spaceloft

Launch
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GNSS Service Volumes

Upper Space Service Volume

Lower Space

Service Volume

Terrestrial

Service Volume

Terrestrial Service Volume (surface to 3,000 km 

altitude)

• GNSS utilization similar to Earth surface use

• Accounts for vast majority of space users

Lower Space Service Volume (3,000 km to 

8,000 km)

• Navigation performance impaired by poor geometry, 

Earth occultation, and weak signal strength

Upper Space Service Volume (8,000 km to 

36,000 km)

• Overlaps and extends beyond the GNSS 

constellations

• Navigation beyond constellations dependent on 

reception of signals from the opposite side of Earth 
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Earth shadowing

Main lobe signal

Side lobe signal

Signal Reception in the SSV
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U.S. Missions using GNSS in the SSV & Beyond
GOES-R Weather Satellite Series:
• Next-generation U.S. operational GEO weather 

satellite series

• First series to use GPS for primary navigation

• GPS provides rapid maneuver recovery, enabling 
continual observation with <2 hour outage per year

• Introduction of GPS and new imaging instrument are 
delivering data products to substantially improve 
public and property safety

Magnetospheric Multi-Scale (MMS) Mission:
• Four spacecraft form a tetrahedron near apogee for 

magnetospheric science measurements (space 
weather)

• Highest-ever use of GPS

– Phase 1: 12 Earth Radii (RE) apogee (76,000 km)

– Phase 2B: 25 RE apogee (~150,000 km) (40% 
lunar distance)

– Apogee raising beyond 29 RE (50% lunar 
distance) completed in February 2019

• GPS enables onboard (autonomous) navigation and 
potentially autonomous station-keeping

MMS Nav Performance (1σ) [7]

Description Phase 
1

Phase 
2B

Semi-major 
axis est. under 

3 RE

2 m 5 m

Orbit position 
estimation

12 m 55 m

GOES-16 GPS Visibility [5]:

• Minimum SVs visible: 7

• DOP: 5–15

Nav Performance (3σ):

• Radial: 14.1 m

• In-track: 7.4 m

• Cross-track: 5.1 m

• Compare to requirement:

(100, 75, 75) m
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Recent MMS Navigation Performance

Average of 1 signal in 
view at apogee 

(187,000 km or 29 RE)
7 dB antenna gain

~23 dBHz acq/trk thresh.

Ashman GPS World Webinar 11.21.19

• Continued outstanding GPS 
performance

• Root variance: Radial < 70m, lateral 
<20m  

• Nearing the tracking threshold of 
Navigator receiver/antenna system 

• Higher gained antenna and/or more 
sensitive GNSS receivers can extend 
signal availability >30 RE

• MMS data enables design of 
missions that can reliably use GNSS 
systems out to lunar distances
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Upper Space Service Volume

Lower Space

Service Volume

Terrestrial

Service 

Volume

MMS Phase 1 

apogee altitude 

(12 RE) 
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Current MMS 

apogee 

altitude (29 RE) 
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Global Interest in Lunar Exploration
The 14 space agencies of the International 

Space Exploration Coordination Group 

(ISECG) state a desire to return to the Moon 

in the next decade in the 2018 Global 

Exploration Roadmap (GER)

14

GER lists more than 20 upcoming lunar missions
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Critical technology gaps identified by the 

GER:

• AR&D Proximity Operations, Target 

Relative Navigation

• Beyond-LEO crew autonomy

GNSS on lunar missions would:

• enable autonomous navigation

• reduce tracking and operations costs

• provide a backup/redundant navigation for 

human safety

• provide timing source for hosted payloads

• reduce risk for commercial development

Recent advances in high-altitude 

GNSS can benefit and enable future 

lunar missions

The Role of GNSS
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Lunar Exploration: Roles for GNSS

Satellite Servicing Lunar Exploration Infrastructure

Human-tended Lunar Vicinity 

Vehicles (Gateway)

Earth, Astrophysics, & Solar 

Science Observations

Lunar Surface Operations, Robotic 

Prospecting,& Human Exploration
Robotic Lunar Orbiters,

Resource & Science Sentinels
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Projected GNSS Performance at the Moon

Winternitz et al. 2019 [8]

• Considered performance on Gateway of MMS-like 

navigation system with Earth-pointed high-gain antenna 

(~14 dBi) and GEONS flight filter software

• Calibrated with flight data from MMS Phase 2B

• L2 southern Near Rectilinear Halo Orbit (NRHO), 6.5 

day period 

• 40 Monte Carlo runs for cases below, w/ & w/o crew

• Uncrewed & crewed (w/ disturbance model) 3 x RMS 

average over last orbit:

“GPS Based Autonomous Navigation Study for the Lunar Gateway” 

Conclusions

• Ground baseline: fewer tracks, larger gaps than GPS

• Average of 3 GPS signals tracked in NRHO

• GPS shows additional improvement over typical ground-

based tracking when crew perturbations are included

• Ground tracking Nav: Hours; GNSS Nav: Seconds

• Beacon augmentations can further improve nav 

performance

• GPS can provide a simple, high-performance, on-

board navigation solution for Gateway 

Ashman PNT AB 11.20.19

Uncrewed Position (m) Velocity (mm/s) Update Rate

Range Lateral Range Lateral

Ground Tracking
(8 hr/pass, 3–4 
passes/orbit) 33 468 1 10.6

Hours, 
Ground-

Based 

GPS + RAFS​* 9 31 0.2 1.2
Real-Time, 
Onboard

​Crewed Position (m) Velocity (mm/s) Update Rate

Range Lateral Range Lateral

Ground Tracking
(8 hr/pass, 3–4 
passes/orbit) 451 8144 18 155

Hours, 
Ground-

Based 

GPS + RAFS​* 21 77 4 12
Real-Time, 
Onboard

*Rubidium Atomic Frequency Standard
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Projected GNSS Performance at the Moon

Anzalone et al. 2019 [9]

• Considered similar MMS-like navigation system for Lunar Pallet 

Lander (LPL)

• Added cross-links to a cubesat navigation beacon deployed into an 

equatorial or polar 200 km altitude lunar orbit

• Steady state errors in low lunar orbit (LLO): ~50 m position and < 5 

cm/s velocity (range improved due to dynamics, lateral dominates )

“Lunar Navigation Beacon Network Using GNSS Receivers”

“Cislunar Autonomous Navigation Using Multi-GNSS and 
GNSS-like Augmentations: Capabilities and Benefits”

Generalized Dilution of Precision for GPS only, 

GPS+Galileo, and GPS+Galileo+CubeSat [10]

Singam et al. 2019 [10]

• Considered same scenario as Anzalone et al. 2019 but 

focused on signal availability and geometry and included 

other GNSS

• ~1 GPS signal available in lunar orbit, ~1 Galileo
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Enabling the SSV
GPS Antenna Characterization Experiment [11]

• First complete mapping of GPS L1 side lobes for all GPS satellites via GEO-

based bent pipe 

• Data set available at https://esc.gsfc.nasa.gov/navigation 

United Nations International Committee on GNSS 

• SSV booklet (first edition published November 2018)

• First publication of SSV performance characteristics for each GNSS 
constellation

• Conservative performance for main lobe signals only

• Working Group B subgroup on space users established in 2018 at ICG-13

• U.S., China, and ESA are co-chairs; India, Russia, Japan members

Galileo, QZSS have released extensive calibrated satellite data

• Per-satellite phase center offsets & variations (PCO/PCV), group delay, etc.

• Responds to recommendation by ICG; offers tremendous science benefit

NASA recommends public release of civil GPS antenna 

patterns per recommendation by the ICG

https://undocs.org/ST/SPACE/75

Ashman PNT AB 11.20.19
Block IIR-M reconstructed 

pattern from GPS ACE [11]
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Enabling the SSV (continued)

NASA-USAF Collaboration on GPS SSV

• 2017 joint NASA-USAF Memorandum of Understanding signed on GPS civil 

SSV requirements 

• as US civil space representative, provides NASA insight into GPS IIIF 
satellite procurement, design and production of new satellites from an 
SSV capability perspective

• intent is to ensure SSV signal continuity for future space users

• currently working on release of GPS III (SV1-10) antenna data
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Diversifying: Robust High-Altitude PNT

Robust high-altitude PNT relies 

on a diversity of navigation 

sources, each with strengths 

and weaknesses:

• GPS+GNSS

• Augmentations

• Ground-based tracking

• Optical navigation

• X-ray pulsar navigation

• Other sources (signals of 

opportunity, etc.)

High Altitude 

GNSS

Optical

Navigation

Onboard 

Navigation Filter

Ground-based

radiometrics

X-ray Nav
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GNSS can be an important part of lunar exploration
• Robust high-altitude PNT relies on a diversity of navigation sources (e.g., GNSS, 

ground-based tracking, optical navigation, x-ray pulsar navigation)

• Increased understanding of signal performance at high altitudes has informed 

GNSS studies that suggest GNSS-based navigation at the Moon can offer 

advantages over conventional ground-based navigation in conops and 

performance 

The GNSS community must act to seize this opportunity
• Operationalizing high-altitude GNSS in known regimes

• Enabling future development through international collaborations, data availability, 

and provider support

• Extending the boundaries of GNSS usage in space to lunar vicinity

• Diversifying to enable robust space-based PNT
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Projected GNSS Performance at the Moon

Delepaut et al. 2019 [11]

• Considered GPS + Galileo, receiver with 15 

dBHz tracking and acquisition threshold, 14 dBi

receiver antenna gain

• Main lobes only

• Trajectory: LUMIO CubeSat mission transfer 

from LLO to EM L2 Halo Orbit

Presentation at 7th Int’l Colloquium on Scientific & Fundamental Aspects of GNSS

“GNSS for Lunar Surface Positioning Based on 
Pseudo-satellites”

Visible GNSS satellites for LUMIO over transfer from 

LLO to NRHO [11]

Sun et al. 2019 [12]

• Considers DOP for a user at 0° lat and lon on the lunar 

surface with GPS-only and with the addition of 1+ surface 

navigation beacons

• 1 beacon reduces PDOP from 1000 to 20
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