

RESEARCH ON A-PNT IN EUROPE

2018 iCNS Conference

Presented to the PNT Advisory Board by: Okuary Osechas Institute for Communications and Naviagtion German Aerospace Center – DLR Redondo Beach, CA. December 2018

Prepared by: Valeriu Vitan EUROCONTROL / DATM / RDS / NAV&CNS Research April 2018

SESAR: Background

PJ 14-03-04 A-PNT:

- EUROCONTROL (strategy, policy)
- DLR (long-term efforts, strategy, solution lead, focal point Navigation)
- Thales
- Honeywell
- Enaire

Solution Ref.	Solution Title	Maturity Level 2019
PJ.14-01-01	CNS environment evolution	TRL2
PJ.14-02-01	FCI Terrestrial Data Link	TRL4
PJ.14-02-02	Future Satellite Communications Data link	TRL4
PJ.14-02-04	FCI Network Technologies incl. voice solutions & military interfacing	TRL4
PJ.14-02-05	Development of new services similar to FIS-B to support ADS-B solutions for General Aviation	TRL4
PJ.14-02-06	Completion of AeroMACS development	TRL6
PJ.14-03-01	Advanced GBAS cat II-III operations (e.g. offset touchdown)	TRL4
PJ.14-03-02	Multi Constellation / Multi Frequency (MC/MF) GNSS	TRL4
PJ.14-03-04	Alternative Position, Navigation & Timing – short term (A-PNT)	TRL6
PJ.14-04-01	Surveillance Performance Monitoring	TRL4
PJ.14-04-03	New use & evolution of Cooperative & Non-Cooperative Surveillance	TRL4

Why A-PNT

- Wide implementation of PBN applications in all phases of flight
 - FRA based on RNAV 5 in en route airspace
 - SIDs/STARs predicated on RNP 1 with RF legs in high density TMAs
 - SIDs/STARs predicated on RNAV 1 in additional TMAs
 - Low altitude helicopter routes predicated on RNP 0.3
 - RNP/APCH (LNAV/VNAV and/or LPV minima) at all instrument RWY ends
- GNSS is the nominal sensor for all PBN operations (required for RNP)
- DF-MC GNSS on the horizon
- Is there still a need for terrestrial backup ?

Why A-PNT

- Arguments for terrestrial backup
 - GNSS vulnerabilities
 - Gradual implementation of DF-MC starting not earlier than 2025
 - State liability for navigation service provision
 - Sovereignty
- A-PNT today:
 - DME/DME (+VOR/DME)
 - ILS/DME
- Future A-PNT must be better
 - Performance
 - Spectrum
 - CNS synergies

A-PNT at ICAO Navigation Systems Panel

- 12th Air Navigation Conference in 2012 led to Recommendation 6/7 d) based on input from USA:
 - ICAO to assess "the need for, and feasibility of, an alternative position, navigation and timing system" (DOC 10007)
 - Resulted in job card assigned to NSP (Job Card NSP 009.03)
 - Current conclusion: need = YES, feasibility = current terrestrial navigation aids are sufficient
 - In PBN airspace, DME/DME and Inertial is the primary option (no more conventional route structure)

• 5th Panel Meeting (Nov 2018) agreed to reorient JC9 to deliver:

- Report on Alternative Position Navigation and Timing (APNT), including consideration of the feasibility of a long-term replacement or enhancement of DME as the main APNT system
- Motivated by SESAR project work, including on CNS Spectrum Efficiency
- Need to recognize that 960 1215 MHz L-Band Spectrum is under significant internal and external pressure
 - Engagement of US in this topic would be very desirable

Short/Mid-term A-PN7 Evolution of legacy technologies

Enhance legacy technologies

- Make use of legacy infrastructure and equipage
- Feasible in short/mid term

Improve performance to support more demanding procedures

New technologies

- Increase spectrum efficiency
- Use CNS synergies

The Time Perspective

Technology Complexity New technologies and technology hybrids, improved performance: RNP 0.3 Multi-DME for better redundancy and flexibility **RNP 1 Reversion** using DME/DME New technologies: **DLR: LDACS pseudoranging** Honeywell: eLoran Status Quo: PJ 14-03-04 Age **DME/DME** supports

RNAV 1

Background: DME

- Distance Measuring Equipment
- De-facto state-of-the-art A-PNT system
 - Two-way ranging
 - Constrained geometry: subtended angle $30^{\circ} \le \alpha \le 150^{\circ}$

How good is DME today ?

- 2.5 × IU 2.5 ×
- Measured accuracy twice better than standards
 - Range error : 2σ < 0.1NM
 - DME/DME NSE: 2σ < 0.3 NM</p>
- Extensive coverage

DME issues:

A systematic look at existing hazards

- EPU: Estimated Position Uncertainty
- Low ramp in DME range error (0.01NM/s) not detected in DME/DME/IRS mode
- Range integrity needed to demonstrate suitability for RNP reversion (min 10⁻⁵/h)

- Although executive monitors are required, no minimum integrity level in ICAO Annex 10
- Nevertheless integrity requirements included in FAA and EUROCAE specifications and therefore modern transponders comply
 - FAA E-2996
 - EUROCAE ED-57 (for DME-P supporting final approach operations)

DME improvements – Short Term Standardisation

Update ED-57

- Reflect actual performance of modern transponders and harmonize with other specifications
- Include guidelines for integrity derivation of DME ground equipment
- Propose improvements compatible with current technology which can be smoothly deployed (e.g. faster rise time)
- Document the use of DME/DME for RNP 1 reversion
- EUROCAE WG107
 - Update ED-57 MOPS for DME ground equipment
 - Write MASPS RNP Reversion using DME/DME Positioning

THALES

DME improvements – Mid Term Hybrid ranging

- DME is a two-way ranging system
- Transponders overload in high traffic density areas
- One way ranging
 - Broadcast from ground (pseudorandom pulse pair sequence)
 - No capacity limitation
 - Needs time synchronisation
- Hybrid ranging
 - Two-way ranging relative synchronisation
 - One-way ranging relative range measurements
 - Reduced risk of transponder overload
 - Compatibility with legacy interrogators

DME improvements – Mid Term Multi-DME

- Snapshot method to compute 3D position in ECEF with RAIM algorithm
- Minimum number of ground stations
 - 3 (4 to eliminate ambiguity)
 - Additional range for integrity
 - Baro altitude can be used as additional range
- RAIM targets
 - Full OPMA compliance
 - HIL:10⁻⁷/h; PFA: 10⁻⁴/h; PMD: 10⁻³/h
 - Assumed transponder integrity: 10⁻³/h
- Initial analysis in Paris CDG area
 - RNP1 protection level is achievable
 - Potential complexity of selection algorithm
 - ★ (15504 possible combinations) solved

 $2\sigma_{\text{DME}}$ = 0.1NM (actual)

LDACS: L-Band Digital Aeronautical **Communication System**

- State-of-the-Art communications system
 - Safety-of-Life rated
 - Full protocol stack
- Demonstrated as a source of pseudoranging
 - $\sigma_{\rho} \leq 20 \text{ m}$
 - Power Amplitude Compatible with DME LDACS DME In-lay channels DME LDACS 0.1 ms

1 MHz

Frequency

Time

Proposed Requirements for Next Generation APNT

- Robust RNP 1: leave-one-out methodology
 - At FL 100 and above
- RNP 0.3:
 - In select terminal areas
 - Service runway ends

Hybrid LDACS-DME meets new requirements

stations

- Robust RNP 1 at FL 100 with 56 17 stations for Germany RNP 0.3 at FRA, MUC with 3
- 49.6 300 DME 49.4 LDACS 250 49.2 (**bep**) 49 48.8 49 200 Latitude 48.6 150 48.4 100 48.2 48 50 47.8 47.6 10.5 11 11.5 12 12.5 13 Longitude (deg)

0

5

 2σ of HPE [m]

10

Longitude [deg]

15

20

Honeywell

eLoran

- Robust alternative to GNSS
 - Complementary physical characteristics (low frequency, high power)
 - Additional data channel (LDC) to convey corrections for major error sources and integrity data
 - Potential multi-modal use: Maritime, Land-mobile, Aviation, Time source
- eLoran for Aviation
 - Can meet RNP 0.3 requirements
 - The use of ADF antenna may facilitate retrofitting
 - Not a wide agreement in aviation community for the use of eLoran
 - Aviation community not the main driver

Honeywell

eLoran

- One of the main source errors: Additional Secondary Factors (ASF)
 - Due to propagation over land and elevated terrain
 - Correction provided typically by measurements recorded in transmitter specific maps / databases
- Novel performance assessment approach:
 - Build accurate ASF model, to be integrated into coverage prediction models or Kalmanbased filters
 - Quantify accuracy, integrity and obtainable RNP levels by combining various models (ASF, SNR, HDOP)

Modular A-PNT

- Multitude of legacy and new positioning sources investigated
- One of the key aspects: Transition
 - Service legacy aircraft
 - Gradual deployment of new ground and on-board systems

- Potential solution: Modular A-PNT
 - Fuse various ranging sources in an aggregated positioning solution with integrity
 - Need to handle systems with different performances, failure modes and maturity levels
- Concept to be further investigated and developed

Modular A-PNT

- Methodology to hybridize radionavigation technologies
- Increased redundancy
 - Increased robustness
 - Ability to derive RAIM-like integrity bounds

- Can accommodate different types of measurements:
 - Two-way Ranging (e.g. DME)
 - Pseudoranging (e.g. LDACS)
 - Angular (e.g. VOR)
 - Barometric

A-PNT Transition

- Main factors that may influence the long-term solution and transition
 - GNSS interference environment
 - Availability and robustness of DFMC GNSS
 - Operational need (higher performance)
 - Worldwide agreement
 - Spectrum pressure on L band
 - Incentives
- Coordinate CNS approach to group COM/NAV/SUR upgrades into a single upgrade would facilitate Airspace Users buy-in
- The long-term A-PNT solution may depend on the progress driven by COM/SUR or by non-aviation applications

Summary

- SESAR PJ 14-03-04 A-PNT:
 - Short term effort:
 - Update to DME Mops
 - Standardization of DME reversion for RNP 1
 - Medium term effort:
 - Implementation of Multi-DME in FMS
 - Long term effort:
 - LDACS for navigation
 - eLoran for aviation
 - Modular A-PNT for RNP 0.3

Engagement of US in this topic would be very desirable

valeriu.vitan@eurocontrol.int

gerhard.berz@eurocontrol.int

luca.saini@thalesgroup.com

jean-pierre.arethens@fr.thalesgroup.com

boubeker.belabbas@dlr.de

petr.hotmar@honeywell.com

okuary.osechas@dlr.de giuseppe.battista@dlr.de

