

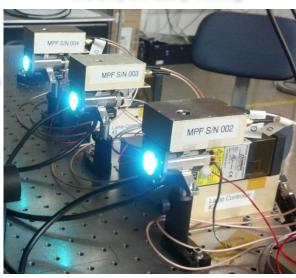
Mission Countdown for Deep Space Atomic Clock

Todd Ely
Principal Investigator/Project Manager

December 2018

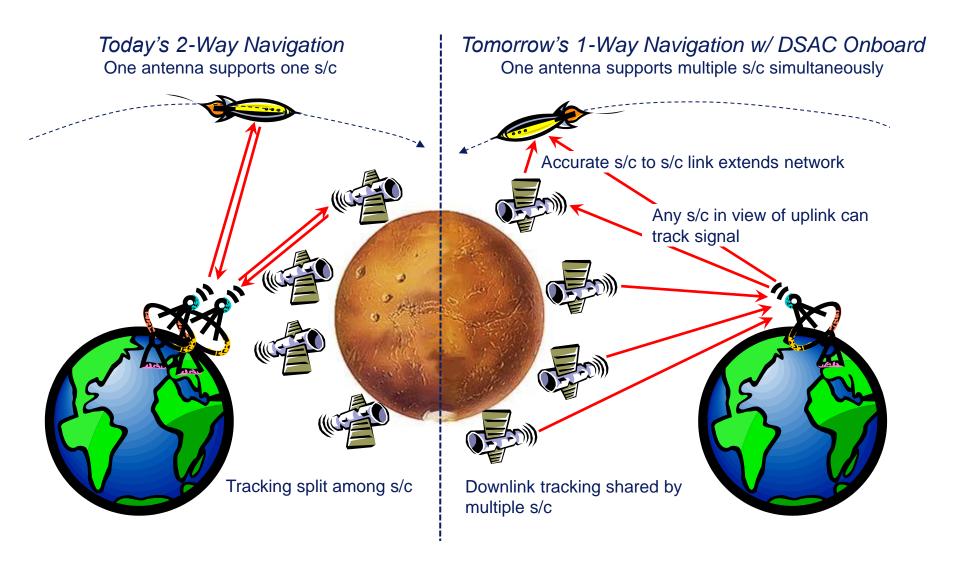
DSAC Technology Demonstration Mission

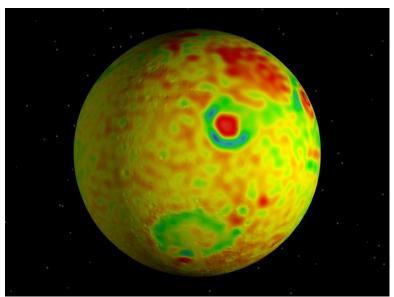
DSAC Demonstration Unit



Multi-pole Trap Quadrupole Trap

Titanium Vacuum Tube

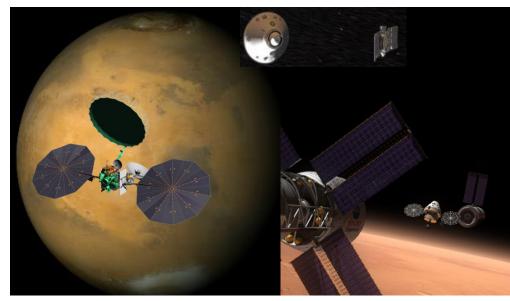

Mercury UV Lamp Testing


Develop advanced prototype ('Demo Unit') mercury-ion atomic clock for navigation/science in deep space and Earth

- Perform year-long demonstration in space beginning Spring 2019 advancing to TRL 7
- Focus on maturing the new technology ion trap and optical systems other system components (i.e. payload controllers, USO, GPS) size, weight, power (SWaP) dependent on resources/schedule
- Identify pathways to 'spin' the design of a future operational unit (TRL 7 → 9) to be smaller, more power efficient – facilitated by a detailed report written for the next DSAC manager/engineers

DSAC Enables a Scalable DSN Tracking Architecture

DSAC Enhances NASA Radio Science and Enables Robust Onboard Navigation

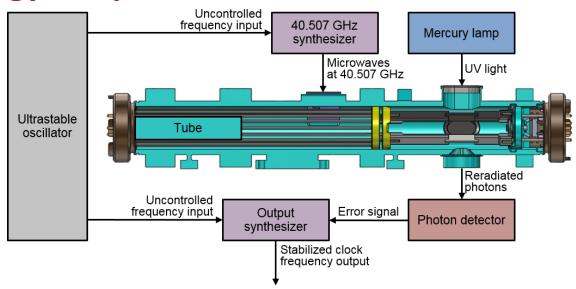


DSAC enables use of existing DSN Ka-band downlink tracking capability

- Ka-band data 10 x more accurate than X-band data
- Determine Mars long-wavelength, time variable gravity effects to GRACE-quality with single s/c
- Improve ring/atmosphere measurements by 100 x

Real time, onboard deep space radio navigation system with DSAC yields

- 100 meter class trajectory knowledge at Mars atmosphere entry
- Enhanced navigation operations such as SEP spiraling into a low-altitude orbit
- Fault tolerant, robust navigation solutions required for safe human exploration



GPS and Other DOD Applications

- DSAC short and long term performance useful for future GPS uses (FAA & autonomy) DSAC short term performance is 10X better than RAFS, and long term performance 50X better
- DSAC performance sufficient for future GPS III URE goals (improved clocks needed to shorten a
 'tent pole' contributing to URE ephemeris error is the other 'tentpole')
- DSAC performance (considering no intrinsic drift) well suited for autonomous operations needed for secure command and control satellite systems (follow-on AEHF) and other government agencies

Technology & Operation

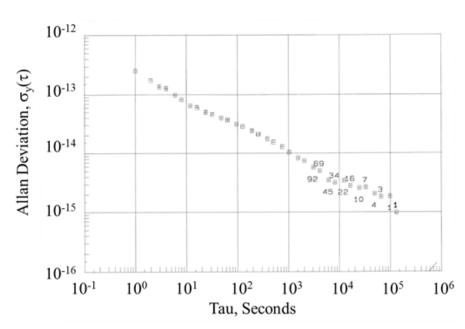
Ion Clock Operation

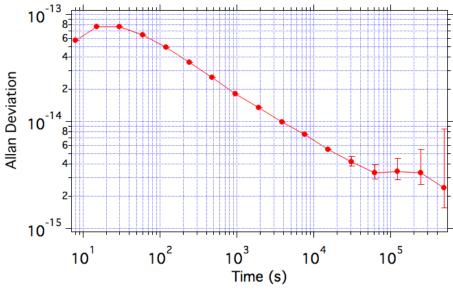
- Short term (1 10 sec) stability depends on Local Oscillator (DSAC selected USO 2e-13 at 1 second)
- Longer term stability (> 10 sec) determined by "atomic resonator" (Ion Trap & Light System)

Key Features for Reliable, Long-Life Use in Space

- No lasers, cryogenics, microwave cavity
- Low sensitivity to temperatures, magnetics, voltages
- Radiation tolerant at levels similar to GPS Rb Clocks

Ion Clock Technology Highlights

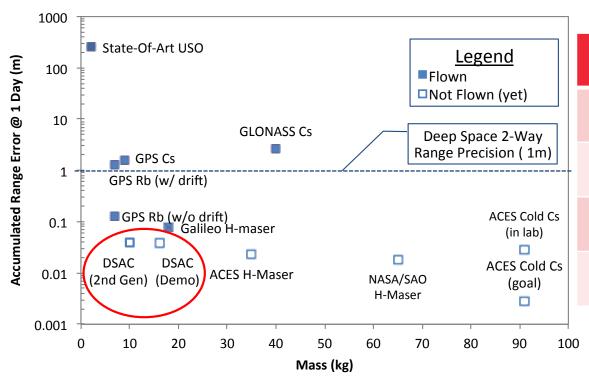

- State selection of 10⁶-10⁷ ¹⁹⁹Hg⁺ electric-field contained ions (no wall collisions) via optical pumping from ²⁰²Hg⁺
- High Q microwave line allows precise measurement of clock transition at 40.5 GHz using DSAC/USO system
- Ion shuttling from quadrupole (QP) to multipole (MP) trap for best disturbance isolation


MP Test Bed:
$$SNR \times Q < \frac{3 \times 10^{-13}}{\sqrt{\tau}} \& A.D. \sim 1 \times 10^{-15}$$

QP -Only implementation offers major simplification

QP-Only DU:
$$SNR \times Q < \frac{5 \times 10^{-13}}{\sqrt{\tau}} \& A.D. < 3 \times 10^{-15}$$

DSAC Demo Unit Ground-Based Measured Stability



- DU in MP with Maser input at constant temperature
- Stability ~1e-15 @ 1-day in MP mode (no drift removed)
 - \rightarrow 87 ps/day or 26 mm/day

- DU in QP with Maser input at constant temperature
- DU/USO configuration tested with similar results
- Stability < 3e-15 @ 1-day in QP mode (no drift removed)

 \rightarrow 0.26 ns/day or 8 cm/day

DSAC Compared to Other Space Clocks

Atomic Frequency Standard	Mass	Average Power
DSAC Demo Unit (1 st Generation)	16 kg	< 50 W
DSAC Future Unit (2 nd Generation)	< 10 kg	< 30 W
GPS IIF Rb (5 th Generation)	7 kg	< 40 W
Galileo H-Maser (2 nd Generation)	18 kg	< 60 W

- Anticipated Allan Deviation (including drift) < 3e-15 at one-day will outperform all existing space atomic frequency standards
- Mass and power of DSAC Demo Unit competitive with existing atomic frequency standards future version could be < 10 kg and < 30 W with modest investment

DSAC is an ideal technology for infusion into deep space exploration and national security systems

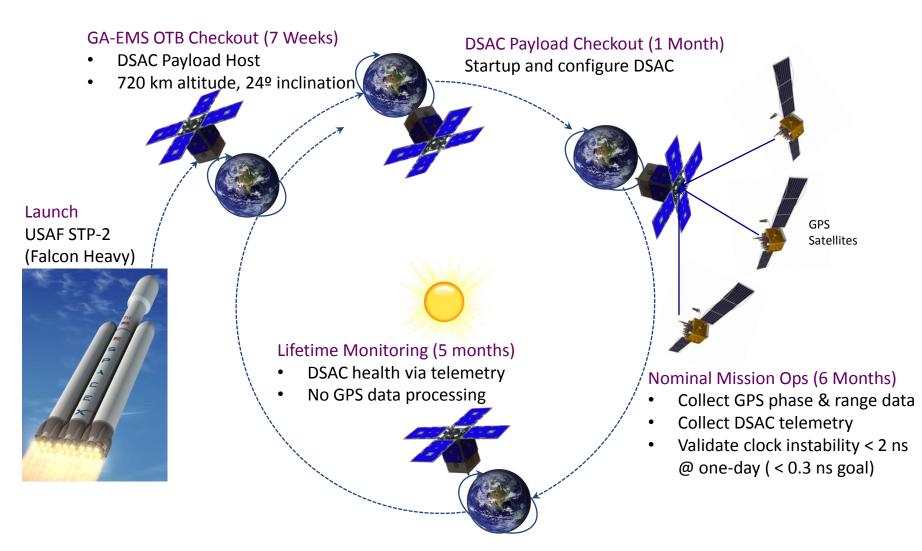
DSAC Payload Integrated on the Orbital Test Bed Spacecraft

Ultra-Stable Oscillator (USO) Local Oscillator (FEI)

Orbital Test Bed (OTB)

Host Spacecraft (GA-EMS)

DSAC Demo Unit (DU)


Atomic Resonator (JPL)

GPS Receiver

Validation System (JPL-Moog)

Demo Unit designed for maximal instrument telemetry and prototyping flexibility and demonstration

Mission Architecture and Timeline

Launch Spring 2019 for one-year demonstration

Schedule

•	MDR & SRR	February 2012 🗸
•	MDR & SRR	February 2012

•	Preliminary Design Review	May 2013 ✔
---	---------------------------	------------

•	Key Decision Point–C	November 2013 🗸
---	----------------------	-----------------

•	Launch	Spring 2019
		ı

Mission Operations Launch + 1 Year

Towards a GPS ready version of DSAC

- Development of an operational mercury atomic frequency standard (MAFS) based on DSAC technology realizable in the near-term
 - Alternate technologies (optical Rb and cold atom Cs) at much lower readiness levels with TRL 7 not achievable for 10 years or more
 - Recent Aerospace report recommended DSAC as the only viable US technology for near term deployment on GPS
 - DSAC Demo Unit a point of departure with demo results feeding into MAFS design and development
- In discussions with the GPS program office on potential for a GPSdemo version of DSAC to fly in a GPS III spare clock slot
 - A smart approach is to pair with the right commercial partner and develop a clock that is easily adapted for multipurpose use – GPS, AEHF, NASA

jpl.nasa.gov