Clash

Dr. Bradford Parkinson
Stanford University

Assured PNT for All
Underlying cause of the Clash: How much received power does a communications system need?

For reasonable Data Error Rates:

\[\frac{E_b}{N_0} \approx 10 \]

Energy per Received Bit

A little Handwaving

By the Prof

Ambient Noise in Receiver Antenna

Assured PNT for All
Greatly Simplified Communication Theory

So for a data rate of D (say 10 megabits/sec):

$$D \cdot E_b = \text{Received Power}(PR) \approx D \cdot 10 \cdot N_0$$

Or:

$$P_R \geq (\text{Data Rate} \times 10 N_0)$$

Not Startling: To send larger amounts of data, need to spray the user with proportionally more power.
• A certain company (Lxxx) had License for transmitting Satellite to Ground for Communications

But the received power was very low and did not support a large D (Data Rate)
But Lxxx saw a great opportunity

- Convert the License to high power terrestrial transmissions (Asked for 15.8 Kw)
 - Tower Spacing at about \(\frac{1}{4} \) mile
 - Would support broadband – sending movies etc.
 - Spectrum Value would jump: \$2B \rightarrow \$10B+

- Tried to get the FCC to slip this through just before Thanksgiving 2010 - while everyone was digesting turkey

- PNT community found out and slowed the process down

- But apparently a predecessor Lxxx company had already found a significant Clash with GPS...
 - According to Harbinger lawsuit
Adjacent band interference concern

<table>
<thead>
<tr>
<th>Lower L band downlink</th>
<th>Upper L band downlink</th>
<th>GNSS Band - GPS Received Power a Millionth of a Billionth of a Watt</th>
</tr>
</thead>
</table>

Original proposal: Convert to terrestrial & transmit **15 kW+**,

Example then Considered: With a minimum tower spacing of ~ ¼ mile (so impacted area must be much less than 1/8 mile or else impacted area could be, e.g., city-wide)
Woops! - GNSS is not just L1 C/A

PNTAB: Interference tests or analyses should be for all proposed GNSS signals!
Lxxx signal goal is **5 Billion times GPS at 1/4 mile** (tower spacing suggests GPS never further than 1/8 mile)

Lxxx Equivalent to -
Niagara at ~ 1 Billion Watts
(167 feet with 64,750 cubic feet/second)

Illustrating Power Ratio of 5 Billion to One

GPS - 0.2 Watts
(1 Tablespoon of water per second through 5 feet)
Adjacent band interference concern

“Upper” band is apparently off the table, but not officially rescinded

“Lower” band Power reduced to 1.5 kW
Interference tests were initiated by government and proposer. Results:

- Lxxx claimed minimal harm - stated: could be solved by retrofitting new filters or buying new GPS sets
- DOT showed substantial problems

Who to believe? The Tests:

- 1) FCC mandated Technical Working Group (TWG)
- 2) National Space-Based PNT Systems Engineering Forum (NPEF)
- 3) Department of Transportation (DOT) Adjacent Band Compatibility (ABC)
- 4) Roberson and Associates (RAA)
- 5) National Advanced Spectrum and Communications Test Network (NASCTN)
Evaluating the Quality of the GNSS interference tests

<table>
<thead>
<tr>
<th>PNTAB Evaluation Criteria</th>
<th>TWG</th>
<th>NPEF Rounds 1 & 2</th>
<th>RAA</th>
<th>NASCTN</th>
<th>DOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Used 1 dB IPC as metric</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>2. Included all classes of receivers</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>3. Included all modes of operation</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>4. Focused on stressed conditions</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>5. Addressed impact on emerging GNSS</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>6. Included GNSS experts and public</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Figure 1. Summary of PNTAB Criteria Evaluations

Lxxx Sponsored

“ABC”
Example of ABC Test Results

Figure 3-23: HPR bounding ITMs for each of the emulated GNSS signals

Received Power should be below line

Lower Lxxx 1530 MHz

GPS 1575 MHz
High Precision Receiver - Maximum Tolerable Lxxx Power (at 1530 MHz) vs Distance

At 10 Watts Lxxx power, HPR receivers within ~1 Mile are degraded.

Mid tower (200M) at 400M meter spacing.

Not Tolerable > 25% noise increase
Assured PNT for All

High Precision Receiver – Maximum Tolerable Lxxx Power vs Distance (Lxxx at 1530 MHz)

View in closer (Lxxx wants 1.56 kW)

- Not Tolerable
 > 25% noise increase

- Tolerable Power at distance

With 400 meter tower spacing, if Lxxx degrades within ½ way (200m), degradation will be everywhere.

0.03 Watts @ 200 Meters
Max Lxxx Transmitter Power should be constrained by the % area that is degraded

Geometric problem directly scales with spacing of transmitters (d)

For Example:
At $0.57 \left(\frac{1}{3^{0.5}} \right) d$, 100% of the area would be covered

What degradation radius would result, if degradation were limited to 10% of the area?
To Protect GPS for 90% of an area of transmitters at spacing d, degradation radius must be less than $0.17 \, d$.

At $0.17 \, d$
10% OF AREA
IS IN DEGRADATION RANGE

0.17d
0.5d
0.57d
0.17d

$0.57 \, d$
Percentage Degraded Area for Various Degradation Radii

No degradation exceeds 1 dB beyond 0.17 of Transmitter spacing

Degradation Limited to 10% of Area
For 90% of Area to be protected, degradation radius must not exceed 0.17 times transmitter spacing. With 400 meter tower spacing, that distance would be 68 meters.
Maximum Lxxx Transmitter power to protect GPS High Performance Receivers - HPR

<table>
<thead>
<tr>
<th>Transmitter Spacing (d)</th>
<th>Radius to protect 90% of the Area from HPR GPS degradation</th>
<th>Tolerable Lxxx Transmitter Power for 90% High Performance GPS Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000m</td>
<td>170m</td>
<td>25 milliwatts</td>
</tr>
<tr>
<td>400m</td>
<td>68m</td>
<td>4 milliwatts</td>
</tr>
<tr>
<td>100m</td>
<td>17m</td>
<td>0.2 milliwatts</td>
</tr>
</tbody>
</table>
Clash - *Fundamental Incompatibility*

Lxxx Proposals

<table>
<thead>
<tr>
<th>~ Date</th>
<th>Power</th>
<th>Spacing</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>15.6 kW</td>
<td>400 Meters</td>
<td>Original "Thanksgiving" Proposal to FCC</td>
</tr>
<tr>
<td>2012</td>
<td>1.56 kW</td>
<td>400 Meters</td>
<td>Quickly dropped power when PNT community protested</td>
</tr>
<tr>
<td>2015</td>
<td>1.56 kW</td>
<td>400 Meters</td>
<td>Last Official, Same as 2012</td>
</tr>
<tr>
<td>2017</td>
<td>19.8 W</td>
<td>Would not say</td>
<td>Verbal only: Presumably less than 400 Meters spacing</td>
</tr>
</tbody>
</table>

DOT Adjacent Band Compatibility Tests

<table>
<thead>
<tr>
<th>Deployment</th>
<th>Stand off distance (m)</th>
<th>Max Tolerable EIRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GLN</td>
</tr>
<tr>
<td>Macro Urban</td>
<td>10</td>
<td>0.8 mW</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>79.4 mW</td>
</tr>
</tbody>
</table>
But Wait - it may be worse...

• Multiple towers contribute additive noise
• Reflections from ground and buildings can increase normal $1/R^2$ models by factors of over 10 (measured in Las Vegas)
• The newer GNSS signals have wider bandwidths for greater accuracy and A/J, but the receivers will also have greater BW
• The new military signal deliberately pushes energy away from the center frequency
High Performance Receiver (HPR) degradation for the 19.9 Watt, “New” Lxxx Proposal – Nov. 2017. 36 towers in DC completely block reception for some receivers. Yellow area is MINIMUM 1 dB degradation. Interior of yellow region much higher than 1 dB. Results will become far worse when Lxxx raises power to 1584 watts.

Propagation Model: FSPL
The Clash - History Review

• To meet original model, Lxxx wanted 15kW at 400 meters tower spacing in two bands. (call this implied Data rate - D_0)

• Their upper band was a complete non-start and abandoned - ($D_0/2$)

• They then said 1.5 kW was a good first step, and this was tested by DOT - and found wanting in 2011. ($D_0/20$, unless tower density increases - call this the modified data rate)

• When the ABC testing in 2016 reconfirmed the problem Lxxx said they would consider an entry level of 19.8W, but would not specify the tower spacing ($D_0/1500$ if density does not increase)*

* Does not scale as separation distance squared - but about as cubed. If separation dropped to 100 meters, pick up factor of 4^3 or 64 - this is close to $D_0/20$
So what?
Summary of Preliminary 2013 US GPS Benefit Estimates

<table>
<thead>
<tr>
<th>Application Category</th>
<th>Range of Benefits ($ billions)</th>
<th>Mid-range Benefits ($ billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision Agriculture – grain*</td>
<td>10.0-17.7</td>
<td>13.7</td>
</tr>
<tr>
<td>Earthmoving with machine guidance in construction*</td>
<td>2.2-7.7</td>
<td>5.0</td>
</tr>
<tr>
<td>Surveying</td>
<td>9.8-13.4</td>
<td>11.6</td>
</tr>
<tr>
<td>Telematics</td>
<td>7.6-16.3</td>
<td>11.9</td>
</tr>
<tr>
<td>Consumer Location Based Services 2 – Vehicle – Value of time</td>
<td>9.8-31.4</td>
<td>20.6</td>
</tr>
<tr>
<td>TOTAL (with alternative estimates for timing and consumer LBS averaged)</td>
<td>37.1-74.5</td>
<td>68.7</td>
</tr>
</tbody>
</table>

- Over $65B In Annual Benefits in identified **Commercial Areas**
- Hi Productivity - Heavy Reliance on High Precision GPS receivers
In Harm’s Way: Rapidly growing RPV/UAV applications

Both RPV Control and Air Traffic Monitoring depend on GPS – probable paths less than 400 Meters to Transmitter sites Apt to be Directly in Main Beam
The Point

• To be viable, Lxxx must achieve a minimal data rate Perhaps D_0, or $D_0/20$

• But this implies a certain Lxxx Received Power level $P_R \geq (D_0 \times 10 N_0)$ at the furthest distance. (again see "scaling" note)

• If achieved by repurposing the 1525 -1535 MHz band at 400 m spacing:
 o as little as 30 milliwatts would degrade GPS High Performance Receivers everywhere

• Any game of trading tower power and spacing, still is approximately the same result

• Toughening GPS might help a little,, but does not solve the problem for existing High Performance Receivers
A New Offer by Lxxx? Allow Lxxx to proceed, and any receivers who experience problems would be able to swap for a new (presumably immune) set

• The 1 dB is not to protect from loss of lock – *it is to preclude errors in timing (ranging) precision and accuracy.*

• Most high precision users will not know this instantaneously – only found out after the fact

• In any area – the number of current users is totally unknown

• The using community would probably have no knowledge of such an arrangement

• Any such “swaps” would incur substantial time delays and loss of productivity

• This is an invitation for protracted litigation – who caused what, when, and where?

• The military has stated the interference for their receivers is similar – how could that be handled? Would Lxxx be a source of classified receivers?

This offer does not seem viable
Avoid the Clash - Just say no !!!

- For results approaching the Lxxx Data rate requires power on the ground everywhere, at levels GPS cannot tolerate.
- The only apparent solutions -
 - leave the space to ground spectrum vicinity unchanged
 - Make a swap, or allow Lxxx to buy spectrum at least 100 MHz away from any GNSS signal