Emerging Microsystem Technologies for Autonomous Positioning, Navigation, and Timing (PNT)

Dr. Robert Lutwak

Program Manager, Microsystems Technology Office (MTO)

National Space-Based PNT Advisory Board

May 18, 2016

DARPA PNT Objectives

- Achieve GPS-level performance under all application scenarios
 - Eliminate GPS as single point of failure
 - Provide redundant capabilities and architectures with no single point of failure
 - Provide optimal solution based on all available data sources
- Outperform GPS for disruptive capabilities
 - Tactical time distribution, advanced communications, and EW
 - Long-term PNT in environments where GPS was never designed for use: undersea, underground, indoors
 - High-precision relative PNT for cooperative effects (multi-static radar, distributed SIGINT, autonomous formation flying, time transfer)

Position is Time is Position

Coordinated engagement

Bistatic RADAR

DARPA State-of-the-Art Clocks

DARPA Clock Investment Strategy

CSAC Typical application model ($\Delta T=10^{\circ}C$)

Error Source		Timing error, Φ , after 6-hour calibration				
		τ= 1 hour	1 day	1 week	1 month	
Initial Sync	Φ_{0}	10 ns	10 ns	10 ns	10 ns	
Initial Cal	f_0	11 ns	259 ns	1.8 μs	7.3 μs	
Frequency Aging	f′ ₀	107 ps	62 ns	3 μs	363 μs	
Instability	σ_{y}	10 ns	51 ns	135 ns	269 ns	
TempCo	f[T]	360 ns	8.6 μs	60.5 μs	242 μs	
Total:		360 ns	8.7 μs	65 μs	43 6 μs	

Miniature Atomic Clocks

- Chip-Scale Atomic Clock (CSAC) program:
 - 100 mW, 15 cm³, 1 μs/1 day
 - Fully transitioned to industrial production (> 30,000 units shipped)
 - Second-source development underway by U.S. Army ManTech program

- Integrated Micro-Primary Atomic Clock Technology (IMPACT) program:
 - Objective: CSAC size with rackmount cesium-beam performance (32 ns/1 month)

Honeywell CAMPS (cold atoms)

OEwaves AOIMPAC (optical clock)

Symmetricom MCAFS (cold atoms)

Sandia MIFS (ion clock)

Limitations of Gas Cell Atomic Oscillators

TempCo and Drift have the same root causes:

- Pressure and composition of cell contents ("buffer gas shift")
- Laser spectrum ("light shift")

Superior performance requires:

- Atoms in vacuum
- Light off during interrogation

Possible ACES interrogation architectures:

- Laser-cooled/trapped neutral atoms
- Trapped ions
- Interrogation of optical transitions
- Other?

© Microsem

ACES Program Goals

DARPA ACES TA-1 Program Milestones

TA-1 over three Phases:

	Proof-of-concept	Integrated Physics	Deliverable Clock	
	Phase 1	Phase 2	Phase 3	
Aging	N/A	< 10 ⁻¹² /month	< 10 ⁻¹³ /month	
TempCo (-40°C to +85°C)	N/A	< 10 ⁻¹⁴ /°C	< 10 ⁻¹⁵ /°C	
ReTrace (on/off/on, 4/24/4 hours)	$\Delta y < 10^{-11}$	$\Delta y < 10^{-12}$	$\Delta y < 10^{-13}$	
Volume	N/A	30 cm ³	50 cm ³	
Power	250 mW	250 mW	250 mW	
Instability	$\sigma_{y}(\tau) < 1x10^{-11} / \tau^{1/2}$	$\sigma_{y}(\tau) < 1x10^{-11} / \tau^{1/2}$	$\sigma_{y}(\tau) < 1x10^{-11} / \tau^{1/2}$	
Notes	Power applies to physics package, which includes all vacuum, optical, and thermal control components	Size and power apply to physics package only, which includes all vacuum, optical, and thermal control components	Size and power apply to fully packaged device, which includes all physics and electronic components	

Simplified Missile/Munition Profiles

Munitions Navigation

State-of-the-Art Accelerometers

State-of-the-Art Gyroscopes

Micro-Scale Rate-Integrating Gyroscope (MRIG)

MRIG Objective:

Micro-scale, high-performance, rate-integrating gyroscope for high-bandwidth high-accuracy inertial navigation

Key Challenges:

Fabrication of high-Q, high-symmetry MEMS devices

Northrop Grumman Hemispherical Resonator Gyroscope (HRG) 4W, 250 cm³, \$100K

Courtesy L. Sorenson, HRL

♦Output

30 Hz

RIG

Single-Chip Timing and Inertial Measurement Unit (TIMU)

TIMU Objective:

Fully-integrated co-fabricated 6-DOF IMU with extremely low CSWaP

Key challenges:

Co-fabrication of high-performance MEMS inertial sensors

Encapsulation requirements for gyros vs. accels Top-level yield

http://tinyurl.com/po7lqg

TIMU Approaches

Monolithic (single die)

Multi-layer (stacked die)

Three-dimensional (folded/co-integrated)

Thomeywell					
Goal	Phase I	Phase II	Phase III		
Volume [mm³]	10	10	10		
IMU accuracy [CEP, nmi/hour]	Oper.	10	1		
Timing accuracy [ns/min]	Oper.	10	1		
Power [mW] (-55°C to +85°C)	-	500	200		

Primary and Secondary Calibration on Active Layer

PASCAL Objective:

Realize MEMS inertial sensors with on-chip calibration Absolute calibration is essential for north-finding

Key challenges:

Co-fabrication of high-performance MEMS devices and calibration stages

Calibrator calibration, numerous moving parts "True" reversibility

Technical Area 1 (TA1): Mechanical self-calibration

- Co-integrated gyroscope + rotary stage
- External physical stimulus
- Maytagging, dithering

Fabrication challenges delayed TA1 performer transition to Phase 3; results anticipated in Spring 2016

Technical Area 2 (TA2): Electronic self-calibration

- Electronic stimulus mimics rotation
- Mode-reversal, virtual carouseling

Four performers (TA2) have submitted devices for Phase 2 government evaluation

SOA Gyroscopes

Precise Robust Inertial Guidance for Munitions (PRIGM)

PRIGM:NGIMU Program Overview

Motivation

Enable guided munitions in GPS-contested theaters by 2020

Objective

- Eliminate compromise between **low-CSWaP**, tactical-grade MEMS and high-CSWaP, navigation-grade RLG/iFOG-based IMUs
- 6.3 program will deliver 10 prototype drop-in replacement navigation-grade MEMS IMUs in 2019
- Engage Service Labs to perform flight demos in 2020

Navigation-grade performance with MEMS CSWaP

PRIGM:NGIMU Program Objectives

Program Deliverables: 10 MEMS-based IMUs at TRL 6 that are DoD-standard, tactical-grade drop-in replacements with navigation-grade performance

Performance Metric	Objective	Units
Volume	82	cm³
Weight	160	g
Power	< 3	W
Operating temperature range	-54 to +85	°C
Vibration DC to 2 kHz	7.7	g _{RMS}
Shock survivability	20,000	g
Bandwidth (min. @ -90° phase lag)	70	Hz
Gyroscope		
Operating range	± 900	°/sec
Turn-on to turn-on bias repeatability	0.01	°/hr, 1σ
Scale factor repeatability	5	ppm
Accelerometer		
Operating range	± 60	g
Turn-on to turn-on bias repeatability	25	μg, 1σ
Scale factor repeatability	25	ppm

PRIGM:NGIMU Program Objectives

Stability Specification (Allan Deviation)				
τ [sec]	Gyroscope σ _Ω (τ) [°/hr]	Accelerometer $\sigma_a(\tau)$ [mg]		
0.1	0.66	0.19		
1	0.21	0.06		
10	0.066	0.01		
100	0.021	0.01		
1000	0.01	0.01		

SOA Gyros: Path to Advanced Inertial Micro Sensors

AIMS Approaches: Rate Integrating Gyroscopes

Conventional Hemispherical Resonator Gyro (HRG)

© Georgia Tech

MEMS Rate Integrating Gyroscopes

Advantages:

No mechanical bandwidth limit

No integration error

Certain candidate geometries (disks, shells) are shock and vibration tolerant

Silicon carbide (SiC) provides environmental robustness

Challenges:

High symmetry required to achieve high-performance

Poor SNR due to circumferential sensing

AIMS Approaches: Photonic Gyroscopes

Waveguide Optical Gyroscopes: Integrated FOG/RLG on a chip

Conventional Fiber Optic Gyro

Photonic waveguide gyro

Advantages:

No moving parts

Tight integration reduces CSWaP and key environmental sensitivities of conventional FOG/RLG

Challenges:

Low-loss waveguides

Vertical integration of multiple waveguides for higher sensitivity

High SNR needed to overcome smaller enclosed area than fiber spool

Photonic integration

AIMS Approaches: Optically Interrogated MEMS

Optically Sensed MEMS Accelerometers

Conventional capacitive sensing

Optically interrogated accelerometers

Optical rather than capacitive sensing of MEMS position for high SNR

Advantages:

High displacement sensitivity allows for stiffer structures (gun-hardened)

Stiffer structures → higher bandwidth

Potential for self-calibration in units of laser wavelength ("light as a ruler")

Challenges:

Opto-electronic-MEMS co-fabrication/integration

Laser wavelength stability

DARPA AIMS Approaches: Acoustic Gyros, Accelerometers

Surface Acoustic Wave (SAW) Gyroscopes

Resonant and Thermal Accelerometers

© Stanford

Advantages:

No moving parts (environmental robustness, gun-hardened) Increased gyro sensitivity due to optical readout

Challenges:

Thermal stability

SOA Gyros: Path to Advanced Inertial Micro Sensors

DARPA PRIGM: AIMS Program Objectives

SWaP & Survival Metric	TA1	TA2	
Volume	1 cm ³	1 cm ³	
Weight	1 g	1 g	
Power	250 mW	250 mW	
Operating temperature range	-54 to +85 °C	-54 to +85 °C	
Vibration (5Hz to 5kHz)	50 g _{RMS}	7.7 g _{RMS}	
Shock survivability	50,000 g	20,000 g	

Operating Conditions				
	Gyroscope		Accelerometer	
	TA1	TA2		
Full-Scale Range	±100,000 °/s	±900 °/s	±50,000g	±60g
Bias Repeatability	0.01 °/hr	0.001 °/hr	10 μg	1 μg
Bias Environmental Sensitivity	0.01 °/hr	2e-5 º/hr	10 μg	0.5 μg
Scale Factor Repeatability	1 ppm	0.01 ppm	1ppm	1ppm
Scale Factor Environmental Sensitivity	1 ppm	1 ppm	1 ppm	1 ppm

DARPA PRIGM: AIMS Program Objectives

Stability Specification (Allan Deviation)				
τ [sec]	Gyroscope σ _Ω (τ) [°/hr]			erometer) [mg]
	TA1 TA2		TA1	TA2
0.1	0.66	2e-3	0.19	1.9e-2
1	0.21	6e-4	0.06	6e-3
10	0.066	2e-4	0.01	1.9e-4
100	0.021	6e-5	0.01	1e-4
1000	0.01	2.5e-5	0.01	1e-4

