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Autonomous Driving

 DARPA Grand Challenge

(11 years ago)
— No finishers in Year 1
— 5 teams finish 1.5 years later

Companies move towards
autonomous driving

— Google Car
— BMW (2025) i %
— Mercedes K
— Ford/GM

States have started passing |
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Need for Vehicle Automation Ag
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« Vehicle accidents are a top cause of fatalities
— Approximately 42,000 roadway fatalities/year i
— 50% resulting from vehicle lane departure

* Increase in technology, processing power
along with decrease cost of new sensors
IS leading to more intelligence in vehicles
— Lane Departure Warning (LDW)
— Adaptive Cruise Control (ACC)
— Advanced Driver Assistance Systems (ADAS)
» Volvo’s City Safe (anti-collision)
* Inifinit's Lane Departure Prevention
* Mercedes’ Traffic Jam Assist
* Lexus’ Automated Parallel Parking

« V2V and V2X will enable more capabilities
with smart connected cars
— Cooperative ACC (C-ACC)
— Automated Platooning




Control of Vehicles Ag
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* Need to know venhicle:
— Position (lane level), Velocity, Direction of travel, Orientation

« LDW- Lane Departure Warning
— Send warning to driver if lane is being approach
— Helps to prevent un-intended lane departure

« ADAS - Advanced Driver Assistance Systems
— Lane Keeping and Lane Centering
— Hidden View Safety Systems

 Above measurements can be made using GPS to:
— Improve vehicle state estimation for Electronic Stability Control (ESC)
— Provide lane keeping control technologies
— Automated vehicle following
« Issues associated with positioning for vehicle safety systems:
— Integrity and Security (when communicating and sharing data)
— Reliability and Robustness (due in part to ubiquitous nature)
 Integration with other sensors (ex: IMU, Cameras, etc.)
— Used to overcome some of the limitations



GPS Measurements
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Vehicle Communications

BasicSafetyMessage (SAE j2735-2009)

« V2X

— Vehicle to Vehicle

— Vehicle to Infrastructure
Dedicated Short Range
Communications (DSRC)

— IEEE 802.11p

« Wifi like signal

Basic Safety Message
(BSM)

— Contains position and time
Crash Avoidance Metrics
Program (CAMP)

— Currently using GPS for BSM

— Recently Complete a Safety
Pilot Program

name
msgCnt
id
secMark
lat

long
elev
accuracy
speed
heading
angle

accelSet

brakes

size

extensions

bytes
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note

# of milliseconds
latitude
longitude

elevation

Speed *and* transmission
degrees

Steering wheel angle
Longitude: meters/second”2
Latitude: meters/second”2
Vertical: G

YawRate: degree/second

On/off statuses for different
brakes

Vehicle’s size information

Optional; variable length



Perception Positioning (Lidar/Camera) |
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Perception Positioning vs. GPS AgN

 GPS Positioning

— May not provide the required
accuracy with out differential
corrections

— Interference, obstruction, etc.

» Perception based positioning

— Requires data base (map)
storage

— What will be the reference
frame
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— Data base may require
frequent updating
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UNIFIED GPS/INS
KALMAN FILTER BASED
VEHICLE

STATE ESTIMATION



Loosely Coupled Algorithm —
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Sideslip Definitions AUBUR
v v=p+y
N 1
f = tan Fx
B = Sideslip

v = Course

Y = Heading




Loosely Coupled Integration

« Components:

INS (6DOF)
GPS (single
antenna)
EKF

« EKEF states (15):

0X = {df. oV, S, 6f. 0w
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Ow — gyroscope biases
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Automotive Navigation Estimator

Pitch rate gyroscope is
removed.

Yaw constraint added
during periods of
straight driving

— GPS course

measurement used as
a yaw measurement.

If yaw rate signal is
less than some
threshold for some
time period, then the
constraint is added.
— Threshold, time
window are tuning

parameters of the
overall estimator.
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Lane Change Experiment AUBUR
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Lane Change Results —
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Low Rates of Sideslip Buildup AE
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« Slow sideslip buildup is generally difficult to estimate
— Low signal to noise ratio.
— Lateral accelerometer bias
— Lateral acceleration vs. roll

CONSUMER REPORIS

Video courtesy of 16
http://video.foxnews.com/v/4148911/raw-footage-lexus-gx460-rollover-risk



http://video.foxnews.com/v/4148911/raw-footage-lexus-gx460-rollover-risk

* Average rate of
sideslip for third turn
of the dynamic

maneuver is 1.8 9€9/s.

 AUNAYV estimator is
able to accurately
estimate the sideslip
buildup at rates as a
low as = 1.8 9e9/s,

Samuel Ginn College of |
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Integrating GPS with other on-board vehicle sensors

VEHICLE LANE POSITIONING



Project Overview
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« Technical Approach — Fuse outputs of various
positioning technologies in an extended Kalman filter

exploiting accuracy/uncertainty and mitigating subsystem
faults
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Vision / INS 6
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e Commercial lane departure warning systems use camera
vision to detect lane markings

* Various problems can hinder lane detection
— Environment (lighting conditions, weather, population density)
— Eroded lane marking lines or objects on the road

* |ntegrate IMU into the vision tracking algorithm
* Predicts features (road marking) during vision “outage”

Vision System Inertial System




Positioning w/ Limited GPS Satellites A[g;w

Utilize constraints to improve IMU
solution

Validated at Auburn’s
NCAT Test Track
using:

» Lateral Constraint
 Vertical Constraint

« 2 GPS Satellites

....h:..G()cwglC
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L ateral Error with Limited GPS 3
Observations AUBURN
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« Camera (or Lidar) provides lateral
measurements

— Requires map database

Estimated Lane Position Estimated Lane Position
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Longitudinal Error with Limited GPS

Observations

measurements
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Camera only provides lateral

— Constraint decreases longitudinal errors
* From limited GPS and also IMU error growth

Estimated Longitudinal Error
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Using GPS for Automated Followin Ag

 GPS can provide a very accurate (cm level) relative
position vector (RPV)

— Requires communication between vehicles (DSRC)
— Provides a measurement to enable vehicle convoying




GPS Path Following Ag
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900 MHz Digi XTend RTK  NovAtel PropakV3 900 MHz Digi XTend inter-
base station vehicle communication
communigcation

v

Y _Leader

Advantech control and navigation computers
Servos
Power regulation and distribution

Crossbow IMU440
(under seat)



Experimentation — Autonomous Following S
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Automated Path Duplication: Short Distance
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Automated Truck Platooning el
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¢ * Drafting reduces
fuel (& emissions)

* Improves safety

* Improves traffic
flow/throughput

3-4% Savings

Advanced Real-time
Control Communication
Algorithms & Sensors e

10-12% Savings

Collision Avoidance Systems @ELO%N
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