Multi-constellation Navigation for Air & Sea: Advanced Receiver Autonomous Integrity Monitoring

for the Space-Based Position, Navigation & Time Advisory Board

by Per Enge, Stanford University* on October 30, 2015

based on work of the ARAIM Technical Subgroup Within Working Group C of the EU/US Bilateral Activity on GNSS

*Funded by the Federal Aviation Administration Under Cooperative Agreement 12-G-003

Disclaimer

The opinions expressed in this presentation may only belong to the speakers.

These thoughts do not necessarily correspond to any present or future view of the

- U.S. government, or
- Federal Aviation Administration, or
- Working Group C, or the
- European Commission

The mistakes are certainly mine alone.

Receiver Autonomous Integrity Monitoring (RAIM) Supports Lateral Navigation for 100,000's of Aircraft

Wide Area Augmentation System (WAAS) Operational Since July 2003

Ground Based Augmentation System

Advanced RAIM (aka Almost RAIM) to Support Lateral + Vertical Navigation Worldwide

ARAIM Benefits

Horizontal ARAIM in the Near Term Based on One Frequency

- Before dual frequency GPS + dual frequency Galileo
- e.g. single frequency GPS + single frequency GLONASS
- Two constellations with very different P_{sat} & P_{const}

ARAIM to Support Artic Navigation with High Integrity

- Energy exploration, eco-tourism & shipping
- Ship speed is doubled in ice cracks
- SBAS GEOs do not cover the poles

Vertical ARAIM Worldwide Without GEOs

ARAIM to Harden GNSS Receivers

- Does not need GEOs
- Does not need low SVs

Bathtub Challenge (from Liang Heng)

Benefit From Following a Crack in the Ice

Polar Coverage of Dual Frequency SBAS & ARAIM

Offline ARAIM Uses the Ephemeris & Clock Data Broadcast by the Core Constellations

Online ARAIM Replaces the Ephemeris & Clock Data (ECD) Generated by the Core Constellations

Multi-constellation for Toughening Air Navigation example is based on RNP 0.3

Constellation	GPS only Mask=5°	GPS only Mask=15°	GPS+Galileo Mask=5°	GPS+Galileo Mask=15°
Depleted with 23 satellites	99.1%	0%	100%	69.3%
Baseline with 24 satellites	100.0%	2.3%	100%	100%
"Optimistic" with 27 satellites	100.0%	19.0%	100%	100%

Small part of aviation portfolio for intentional interference and spoofing Please see Ken Alexander briefing to RTCA in October, 2015.

