Deep Space Atomic Clock Project

NASA’s DSAC Technology Demonstration Mission

Develop advanced prototype (‘Demo Unit’) mercury-ion atomic clock for navigation/science in deep space and Earth

- Perform a year-long demonstration in space beginning in 2016 – advances the technology to TRL 7
- Focus on maturing the new technology – ion trap and optical systems – other system components (i.e. payload controllers, USO, GPS) size, weight, power (SWaP) dependent on resources/schedule
- Identify pathways to ‘spin’ the design of a future operational unit (TRL 7 → 9) to be smaller, more power efficient

Deep Space Atomic Clock Project

DSAC Compared to Existing GNSS Frequency Standards

- Required AD (including drift) of < 3e-15 at one-day (current estimate at 1.5e-15) outperforms existing GNSS frequency standards.
- Demo Unit SWaP is competitive – next version would focus on simplifying electronics to significantly reduce SWaP.
- Easily satisfies future GPS IIIB URE that includes both clock and ephemeris errors.

AFS	Average Power
DSAC Demo Unit (1st Generation) | < 50 W
DSAC Future Unit (2nd Generation) | < 30 W
GPS IIF Rb (5th Generation) | < 40 W
Galileo H-Maser (2nd Generation) | < 60 W

Accumulated Range Error @ 1 Day (m)

Current GPS URE Reqmt

Future GPS IIIB URE

Mass (kg)

< 0.01
< 0.1
< 1
< 10
< 50 W
< 30 W
< 40 W
< 60 W

For More Information, Contact: Todd.A.Ely@jpl.nasa.gov; Website: http://www.nasa.gov/mission_pages/tdm/clock/
Deep Space Atomic Clock Project

DSAC Demonstration Payload and Hosting

- DSAC flight experiment of the Demo Unit as a hosted payload on Surrey Satellite Technology US’s Orbital Test Bed II (OTB II) spacecraft
 - OTB II is a 180 kg ESPA-compatible spacecraft – fixed arrays, no active maneuvering, nadir fixed attitude maintained/controlled via reaction wheels/magnetorquers.
 - OTB II hosting other payloads including several Air Force experiments
 - Launched as part of USAF STP II (a Space X Falcon 9 Heavy) currently scheduled for May 2016
Deep Space Atomic Clock Project

DSAC Mission Architecture

Launch May 2016 with one-year demonstration

SST-US Orbital Test Bed II

GPS Sat 1

GPS Sat 2

GPS Sat n

DSAC Hosted Payload

Commanding & Telemetry

International GNSS Service (IGS):
- ~ 400 GPS tracking stations globally
- IGS timescale (ensemble clock w/ ~ 5.e-16 stability)

SST-US Ground Network

sftp

WWW

DSAC Investigation Team

USAF STP II
(Falcon Heavy)

For More Information, Contact: Todd.A.Ely@jpl.nasa.gov, Website: http://www.nasa.gov/mission_pages/tdm/clock/

(c) 2014 California Institute of Technology. Government sponsorship acknowledged. This document has been cleared for public release.
Deep Space Atomic Clock Project

Schedule

- Mission Definition & System Reqmts Review: February 2012 ✔
- Preliminary Design Review: May 2013 ✔
- NASA Commitment Review (KDP-C): November 2013 ✔
- Clock Critical Design Review: July 2014
- Mission CDR & System Integration Review: September 2014
- Pre-Ship Review: March 2015
- Flight Readiness Review: February 2016
- Launch & Mission Operations: May 2016 + 1 Year
DSAC, GPS, and Other DOD Applications

- Future GPS III URE goals require performance gains in a number of areas including clocks
 - DSAC performance significantly shortens one of the ‘tent poles’ contributing to URE

- DSAC can contribute to other AF programs and government agencies with atomic clock needs
 - DSAC performance (considering no intrinsic drift) well suited for autonomous operations needed by future secure command and control satellite systems currently in study

- Development of an operational mercury atomic frequency standard (MAFS) based on DSAC technology realizable in a near-term time horizon
 - Alternate technologies (cold cesium atom and optical Rb) are at lower readiness levels with TRL 7 not achievable for another 5 – 10 years
 - Current DSAC a point of departure for MAFS with flight experiment results in 2016 feeding into MAFS design and development
 - Low level effort starting as soon as FY ’15 would focus on simplifying tube manufacturing and increasing lamp lifetime using known measures with success leading towards a fully committed project developing an operational MAFS
 - Frist operational demonstration of MAFS on the 4th slot (with monitoring capability) of a future GPS satellite or alternate AF platform (such as NavSat) provides pathway for new technology adoption in operational PNT systems
Deep Space Atomic Clock Project

Backup
Deep Space Atomic Clock Project

DSAC Technology and Operation

Ion Clock Operation

- Short term (1 – 10 sec) stability depends on the Local Oscillator (DSAC selected USO 2e-13 at 1 second)
- Longer term stability (> 10 sec) determined by the “atomic resonator” (Ion Trap & Light System)

Key Features for Reliable, Long-Life Use in Space

- No lasers, cryogenics, microwave cavity, light shift, consumables
- Low sensitivity to changing temperatures (7e-16/C @ 1-day), magnetics (3e-15/G @1-day), voltages (3e-16/V @ 1-day)
- Radiation tolerant at levels similar to GPS Rb Clocks

Ion Clock Technology Highlights

- State selection of 10^6-10^7 199Hg$^+$ electric-field contained (no wall collisions) ions via optical pumping from 202Hg$^+$
- High Q microwave line allows precision measurement of clock transition at 40,507,347,996.8 Hz with

$$SNR \times Q = \frac{3e-13}{\sqrt{\tau}}$$

- Ion shuttling from quadrupole to multipole trap to best isolate from disturbances
- 1-2 UV photons per second scattered
- Ions are in an uncooled Neon buffer-gas
Deep Space Atomic Clock Project

DSAC’s Crosscutting Customer Base – Infusion Targets

|------------------------------|-----------------------|---------|-------------------|----------|

- Improve GPS clock performance
- Diversifies clock industrial base - enhancing national security
- Provides needed time accuracy/stability for next generation secure communications
- Significant aid to users with compromised GPS visibility – need only 3 in-view to position
- Multiple Spacecraft Per Aperture at Mars - doubles useful tracking
- Full use of Ka-band tracking – OD uncertainty at Mars < 1 m (10 x improvement)
- Outer planets users gain significant tracking efficiency – 15% at Jupiter 25% at Saturn
- Enhance gravity science at Mars, GRACE-level determination of long term gravity with one satellite, at Europa, flyby gravity objectives met robustly
- Enhance planetary occultation science with 10 x better data
- Significantly reduce spacecraft timekeeping overhead
- Improve reliability of critical time-dependent autonomous spacecraft functions
- Reduce risks to long-term spacecraft hibernation
- Enables autonomous radio navigation (robotic and crewed)
- Enhances EDL and precision landing
- Key component to autonomous aerobraking
- Coupled with OpNav, enhances primitive body exploration

Cross-cutting Customer Base Reduces the Risk of Infusion