GLONASS and Multi-GNSS in the IGS: Lessons learned from GLONASS Service Disruptions

G. Beutler, R. Dach Astronomical Institute, University of Bern **O.** Montenbruck DLR, German Space Operations Center **U. Hugentobler** Technical University of Munich G. Weber Bundesamt für Kartographie und Geodäsie, Frankfurt E. Brockmann Swisstopo, Wabern 13th Meeting of the National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board June 3-4, 2014 **Omni Shoreham Hotel** 2500 Calvert Street NW Washington DC

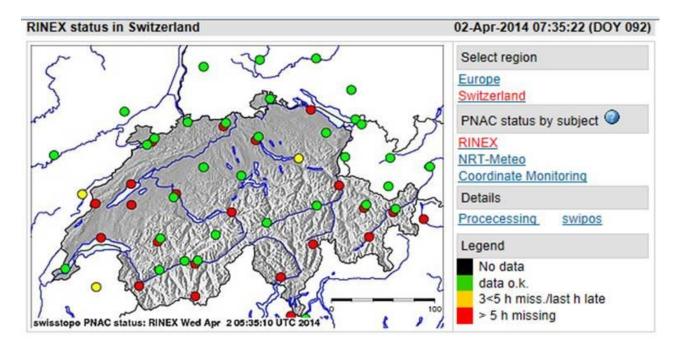
Content

- The International GNSS Service (IGS)
- The IGS as a multi-GNSS Service
 - The IGS Real time Experiment
 - The IGS/MGEX Experiment
- > The GLONASS April 1st event: a case study
- The GLONASS April 1st, 2014 viewed by the IGS
- Lessons to be learned

The International GNSS Service (IGS)

- ... is the premier source of the highest-quality GNSS data, products, and related standards and conventions
- ... is in support of many applications that benefit the scientific community and society
- ... is a Service of the International Association of Geodesy (IAG) founded in 1994
- ... is operational since more than 20 years
- ... is a federation of more than 200 institutions and organizations worldwide
- ... is following an open data policy
- ... is open to everybody to participate

The International GNSS Service (IGS)


The IGS in particular operates

- > The MGEX, Multi-GNSS Experiment
- The IGS Real-time Experiment

More about the two IGS entities will be presented tomorrow.

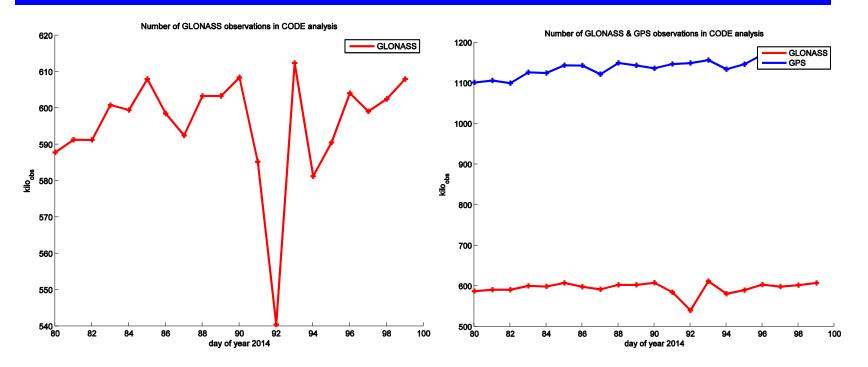
The GLONASS April 1st Incident: a case study

RINEX status by site									
AIGE	AND2	ARDE	ARD2	BLFT	BOUR	BOU2	BSCN	COMO	DAVO
		ERDE	ETHZ	ETH2	FALE	FHBB	FLDK	FREI	FRIC
		HOHT	HOH2	HUTT	JUJO	KALT	KOPS	KRBG	KREU
LECH	LIND	LOMO	LUZE	MABZ	MARG	MAR2	MTTI	NEUC	
PFA2	PRNY	SAAN	SAA2		SANB		SCHA	SIGM	STA2
STCX	STGA	VARE	VISW	WEIN		ZIMM	ZIM2	-	

GODZ	566645667656777788888888666667566775898879*899886566654667767888 <mark>8</mark>	99888874	
GOLD	88668875554456755788878988878877656666558898988888877777766666666 <mark>6</mark>	77666788	
GOPE	888799866665467656678777887877665566467766767777676888656655678 <mark>1</mark>	2224	
GRAS	988988866567544664356665675888855666566766667678778877745666467 <mark>7</mark>	75566788	
GRAZ	999*99887878978896888899999988897889*888988887999889988897878988 <mark>-</mark>	12325	
GUAM	876665655556544677676565776776765556545466575445565544545556645 <mark>5</mark>	77776666	
GUAT	7666666345556777887888876765555655567788989***988888666666667789 <mark></mark> 9	98888887	
GUUG	8887666556666887788899998898777766666787667779898877655555666689 <mark>7</mark>	78-89999	
HARB	9888879998999986666666666678977788888787877667766	666666	
HERS	98788876776557667677878*988988877887687775778879889988898888787 <mark>7</mark>	6799*89*	
HERT	*98*99878886777766778888988888887878778788777788898987988777787 <mark>8</mark>	8899*999	
HLFX	66666677786678678777787776666677878789978*9888765566665877878987 <mark></mark> -	22-1	
HNPT	8666666677678787798888797666776677989988**9999886666667677889989 <mark></mark> 9	9*888888	
HOB2	8898887999789888777687788878887998678887766666666	66667667	
HOFN	9***9999*99899878879989999999999998*8**9998*87988999*999*	23335	
	+++++++	+	
	0 12	24	

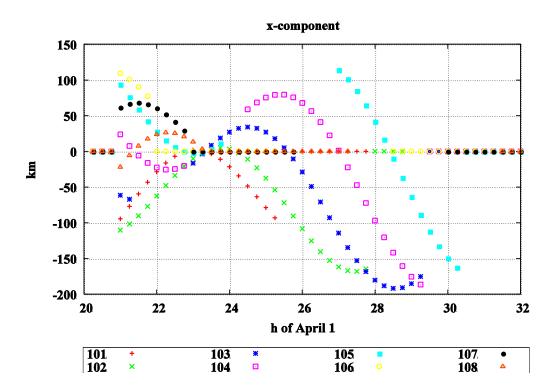
GLONASS satellites tracked by IGS receivers (from CODE analysis protocol of April 1). Some receivers unaffected, some stopped tracking GLONASS after 9^h p.m. (red line), some even stopped GPS tracking!

Out of about 180 receivers used by CODE, about 60 were severely affected!


The International GNSS Service (IGS)

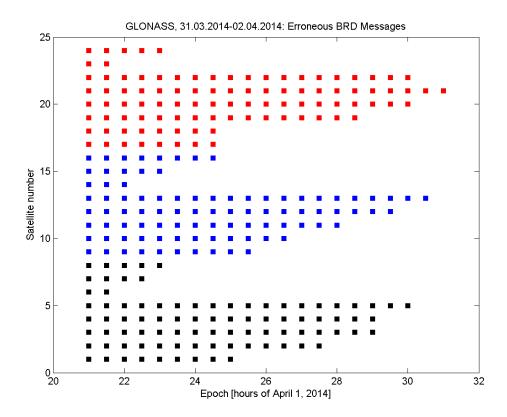
Site	City	Country	Lat	Lon	Height	Receiver	Antenna		Calibration	Last Data Avail	Satellite System
GODZ	Greenbelt	United States	39.02	-76.83	14.51	JPS EGGDT	AOAD/M_T	JPLA	N/A	24-May-14	GPS GLO
GOL2	Goldstone	United States	35.42	-116.89	986.68	ASHTECH UZ-12	AOAD/M_T	NONE	ROBOT	24-May-14	GPS
GOLD	Goldstone	United States	35.42	-116.89	986.68	JPS EGGDT	AOAD/M_T	NONE	ROBOT	24-May-14	GPS GLO
GOPE	Ondrejov	Czech Republic	49.91	14.79	592.60	TPS NETG3	TPSCR.G3	TPSH	ROBOT	24-May-14	GPS GLO
GOUG	Gough Island	dependent territory of the U.K.	-40.35	-9.88	81.27	LEICA GR10	LEIAR25	LEIT	ROBOT	N/A	GPS GLO GAL BDS
GRAC	Caussols	France	43.75	6.92	1319.80	TRIMBLE NETR9	TRM57971.00	NONE	ROBOT	N/A	GPS GLO GAL BDS SBAS
GRAS	Caussols	France	43.75	6.92	1319.30	TRIMBLE NETR5	ASH701945E_M	NONE	ROBOT	24-May-14	GPS GLO
GRAZ	Graz	Austria	47.07	15.49	538.30	LEICA GRX1200+GNSS	LEIAR25.R3	LEIT	ROBOT	24-May-14	GPS GLO
GUAM	Dededo	Guam	13.59	144.87	201.92	JAVAD TRE_G3TH DELTA	ASH701945B_M	JPLA	N/A	24-May-14	GPS GLO
<u>GUAO</u>	URUMQI	CHINA	43.47	87.18	2049.20	ASHTECH UZ-12	ASH701945B_M	NONE	COPIED	14-Apr-14	GPS
GUAT	Guatemala City	Guatemala	14.59	-90.52	1519.90	LEICA GRX1200GGPRO	LEIAR25.R3	LEIT	ROBOT	24-May-14	GPS GLO
GUUG	Mangilao	USA	13.43	144.80	134.70	TRIMBLE NETR5	TRM55971.00	NONE	ROBOT	24-May-14	GPS GLO
HALY	Halat Ammar	Saudi Arabia	29.14	36.10	861.68	TRIMBLE NETRS	ASH701945C_M	SCIT	FIELD	N/A	GPS
HARB	Pretoria	Republic of South Africa	-25.89	27.71	1555.00	TRIMBLE NETR9	TRM59800.00	NONE	ROBOT	24-May-14	GPS GLO GAL SBAS
HARV	Vandenberg AFB	United States	34.47	-120.68	14.97	JAVAD TRE_G3TH DELTA	AOAD/M_T	JPLA	N/A	15-Jan-14	GPS GLO
HERS	Hailsham	United Kingdom	50.87	0.34	76.50	SEPT POLARX3ETR	LEIAR25.R3	NONE	ROBOT	24-May-14	GPS GLO
HERT	Hailsham	United Kingdom	50.87	0.33	83.30	LEICA GRX1200GGPRO	LEIAT504GG	NONE	ROBOT	24-May-14	GPS GLO
<u>HLFX</u>	Halifax	Canada	44.68	-63.61	3.10	TPS NET-G3A	TPSCR.G3	NONE	ROBOT	24-May-14	GPS GLO
	I I and a local sector.	1104	24.20	457.00	00.00		LOUZOOOOD N	01000	DODOT	Sec. 44	

Time (UTC)	Chronicle of Events
April 1, 21:00	GLONASS starts transmitting "infected" Broadcast messages simultaneously from all satellites.
April 2, 7:00	All GLONASS satellites transmit again correct broadcast messages (satellite 21 last satellite).
April 3, 9:23	E-Mail by Chris Rizos (IAG President and IGS GB member) to IGS GB et al: "What do you guys know about this? Have you been fielding any questions from media? users?" (wake-up call for IGS)
April 3, 10:36	E-Mail by Tim Springer (ESA Analysis Center) stating in essence that the "normal" IGS processing (final, rapid, ultra-rapid) was not affected ("nobody noticed")
April 4, 14:29	E-mail by Urs Hugentobler, Chair IGS Governing Board : First IGS- internal analysis of the event. Osculating elements derived from GLONASS Broadcast analyzed. He "sees" rotations of orbital planes, specific to three GLONASS planes
Since	Various attempts to explain the signature of the event (from cyber war to more technical and resonable)

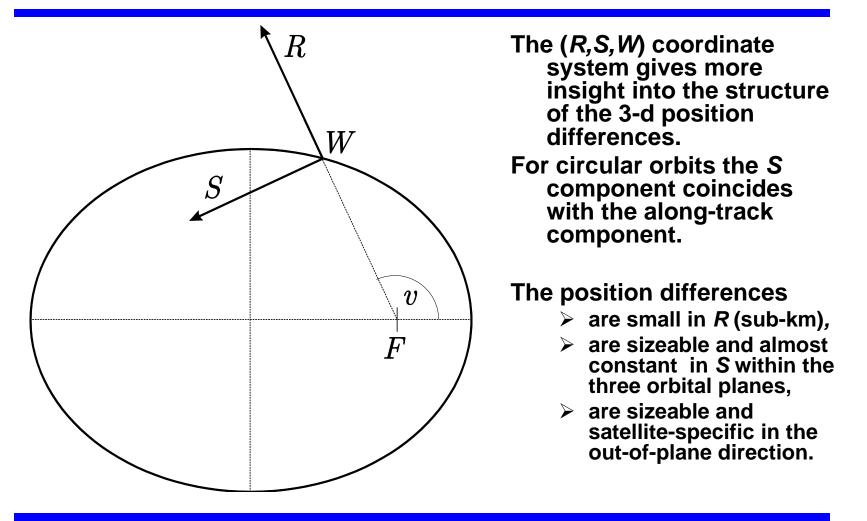

From CODE Analysis protocol: Number of GLONASS observations reduced by about 10% on April 2nd. → this is why the IGS postprocessing products were virtually not affected (orbits are based on one day of observations). Had the incident lasted for > 1 day, the impact would have been more severe.

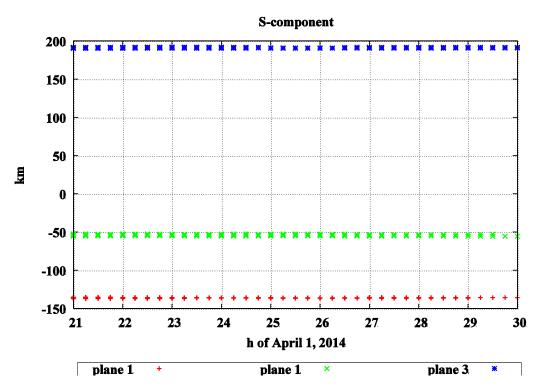
Satellite position differences in next slide

- refer to the GLONASS/Broadcast- and CODE/IGSderived positions ("truth").
- in the Earth-fixed equatorial system
- between April 1st, 20:00 and April 2nd, 08:00
- the differences are of the order of ± 200km
 between April 1st, 21:00 and April 2nd, 07:00
- Before April 1st, 21:00 and after April 2nd, 07:00 the differences are small, of the order of few meters.

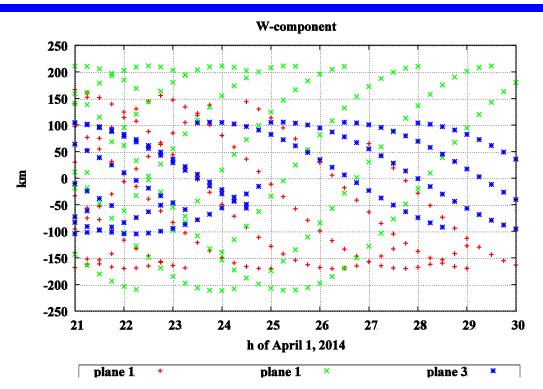


Bad Broadcast Messages (resulting in satellite position errors up to about ±200km) were sent out starting April 1, 2014, 21h UT; Errors in geocentric, Earth-fixed x-coordinate of satellites of orbital plane 1.


Normal transmission resumed at different times for different satellites. Complete "back to normal" around 7h UT of April 2.



Messages affected (from Hugentobler, E-mail April 4). Satellites 6, 7, 8, 14, 15, 23, 24 back to normal before end of April 1st (UTC).



Bad Broadcast Messages (resulting in position errors up to about ±200km) were sent out starting April 1, 2014, 21:00; Errors in along-track coordinate S of satellites in orbital planes 1, 2, 3 are almost constant within each orbital plane.

Normal transmission resumed at different times for different satellites. Back to normal around 7h UT of April 2.

Bad Broadcast Messages (resulting in position errors up to about ±200km) were sent out starting April 1, 2014, 21:00; Errors in out-of-plane coordinate W of satellites in orbital planes 1, 2, 3 are satellite-specific and periodic with amplitudes of the order of up to 200 meters.

Normal transmission resumed at different times for different satellites. Back to normal around 7h UT of April 2.

- Three orbits using satellite positions as pseudo-observations were determined for each satellite:
 - F1_: GLONASS Positions from CODE final processing. Time interval April 1, 20^h00^m – April 2, 07^h00^m. Reference orbit ("truth").
 - GL_1: Positions from GLONASS Broadcast Ephemerides. Time interval April 1, 0^h00^m – April 1, 20^h45^m. (Correct GLONASS Broadcast Orbit).
 - GL_2: Positions from GLONASS Broadcast Ephemerides. Time interval April 1, 21^h00^m – 23^h45^m. (Erroneous GLONASS Broadcast Orbit). Last observations of day skipped for satellites 6, 7, 8, 14, 15, 23, 24.

Each orbit was parameterized with 6 osculating elements (initial values) and 9 empirical parameters of the CODE model.

Satellite	RMS (F1_)	RMS(GL-1)	RMS(GL-2)
1, plane 1	0.01	0.37	0.46
2 , plane 1	0.02	0.34	0.42
3 , plane 1	0.01	0.36	0.33
4 , plane 1	0.02	0.40	0.32
5 , plane 1	0.02	0.35	0.44
6 , plane 1	0.01	0.33	0.23
7 , plane 1	0.01	0.36	0.73
8 , plane 1	0.02	0.37	0.44

The RMS values show:

- F1_: The consistency of the 15-parameter solution with the more elaborate CODE orbit model.
- GL-1 and GL-2: the positions of both GLONASS-derived positions obey the laws of Celestial Mechanics.
- The GL-1 and GL-2 positions cannot be mixed in orbit determination!
- The GL-1 and GL-2 positions are compared to the F1_- positions by estimating three rotation angles about the equatorial inertial x-, y-, and z-axes.

Solution	Rot x (")	Rot y (")	Rot z (")	RMS (m)
GL-1	0.00	-0.00	0.38	2.0
GL-2	-1763.25	5.28	2.09	70.7

Rotation of GLONASS Broadcast Orbits w.r.t. CODE 1-d orbits F1_.

Erroneous GLONASS Broadcast positions show a consistent rotation of about 0.5 degrees about inertial x-axis.

Understood:

- > The GNONASS April 1^{st} event was *not* a joke.
- > The failure was caused by wrong Broadcast Ephemerides
- Image: marked on a software update, activated on April 1st at 9^h p.m. UTC (24^h/0^h "Moscow Time")
- The error was
 - identified by the GLONASS provider almost immediately after the activation of the new BE ...
 - but not communicated to the users of GLONASS.
- The correction (switch back to "old" software release?) took place satellite-by-satellite (starting on April 1, 10^h45^m p.m. UT).
- The effect on receivers obviously was dependent on the receiver type & firmware release.

Aspects to be considered by the IGS:

- The Broadcast Ephemerides (BE) are not needed for the IGS post-processing activities (ultra-rapid, rapid, final).
 - \rightarrow No actions needed concerning BE for these applications
 - → Report about malfunctioning receivers might be collected routinely and made available in a report.
- The BE are, however, of vital importance for the IGS Real-time Service (corrections w.r.t. BE are sent out); the BE are a "single point of failure" for the IGS real-time Experiment.
 - Therefore one should either

→ implement an IGS real-time validation of all BE of all GNSS and make it available to the user community.

∎ or

→ reconsider the use of the BE for the IGS Real-time Experiment, as well.

Aspects to be considered by the IGS (cont):

- GPS and GLONASS are today fully deployed systems. Despite that fact only combined solutions (or GPS-only solutions) are generated in the IGS.
- One might apply the following principle for fully deployed systems in the IGS:
 - Prior to combination, parameters of general interest (e.g., station coordinates, Earth Rotation Parameters) should be determined separately using only the observations of either GPS or GLONASS.
 - GNSS-specific problems are more easily identified this way.
 - The same principle should be observed by receiver software/firmware.
- In addition, the quality of BE of all GNSS should be monitored by the IGS. For that purpose the predicted part of the IGS ultra-rapid orbits might be used.

Back-up Slides

Multi-GNSS Experiment (MGEX)

Multi-GNSS Experiment (MGEX)

- MGEX call-for-participation released mid-2011 (ongoing)
- Steered by Multi-GNSS Working Group (MGWG)

Some 27 contributing agencies from 16 countries

Global tracking network, mostly real-time

- State-of-the-art receivers and antenna
- Tracking of Galileo, BeiDou, QZSS, SBAS (but no IRNSS, yet)

Free and open access

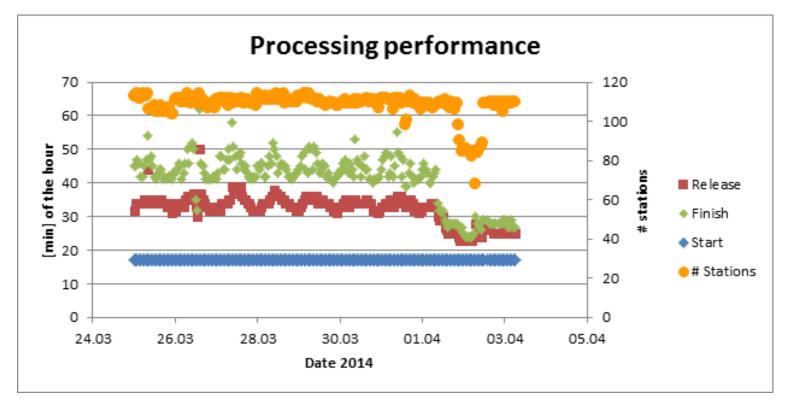
- > Data archives at CDDIS, IGN, BKG (RINEX 3.x)
- Real-time NTRIP caster (RTCM3-MSM)
- Product archive at CDDIS

IGS Real-time GNSS Service

Open Data

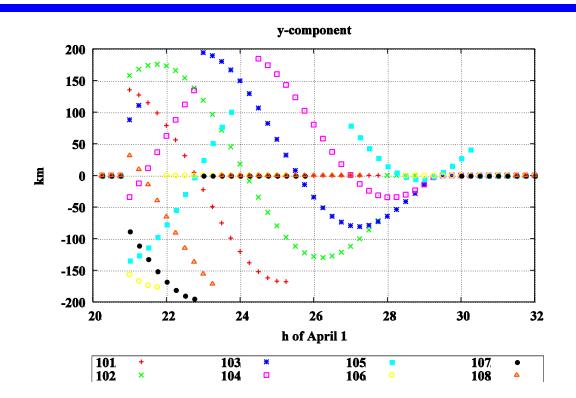
- **Observations & derived products freely available**
- Streaming data over IP Networks in real-time
- Best effort operations, distributed governance ٠
- Funded by national agencies, institutions, science •
- Playing some global coordination role

Open Source


- Supporting Real-time GNSS tools for Linux, Solaris, Window, Mac
- Multi-stream decoder, feeding GNSS engines, etc. ٠
- Combining, encoding and uploading orbit/clock corrections •
- **Precise Point Positioning options**
- Support of all GNSS through RINEX-3

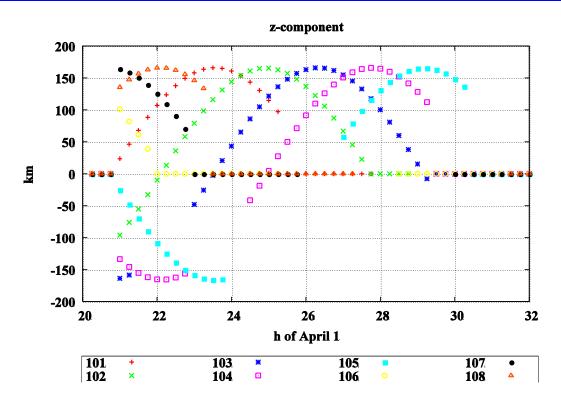
Open Standards

- Standardization in RTCM is understood as key issue
- Concepts and messages for all types of corrections •
- Make PPP an optional alternative to Network RTK •



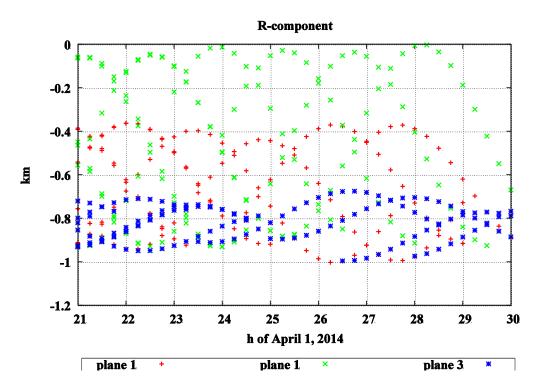
The GLONASS April 1st Incident: a case study

AGNES network of Swisstopo (one receiver type). Impact was heavy! GPS tracking was affected, as well!



Bad Broadcast Messages (resulting in position errors up to about ±200km) were sent out starting April 1, 2014, 21:00; Figure shows Errors in geocentric Earth-fixed y-coordinate of satellites of orbital plane 1.

Normal transmission resumed at different times for different satellites. Back to normal around 6h UT of April 2.



Bad Broadcast Messages (resulting in position errors up to about ±200km) were sent out starting April 1, 2014, 21:00; Figure shows errors in geocentric Earth-fixed z-coordinate of satellites of orbital plane 1.

Normal transmission resumed at different times for different satellites. Back to normal around 6h UT of April 2.

Bad Broadcast Messages (resulting in position errors up to about ±200km) were sent out starting April 1, 2014, 21:00; Errors in radial coordinate R of satellites in orbital planes 1, 2, 3 are "only" of sub-km size.

Normal transmission resumed at different times for different satellites. Back to normal around 7h UT of April 2.

Satellite	RMS (F1_)	RMS(GL-1)	RMS(GL-2)
9, plane 2	0.03	0.31	0.30
10 , plane 2	0.01	0.43	0.32
11 , plane 2	0.03	0.31	0.47
12 , plane 2	0.01	0.36	0.29
13 , plane 2	0.03	0.36	0.35
14 , plane 2	0.01	0.43	0.34
15 , plane 2	0.02	0.58	0.40
16 , plane 2	0.01	0.34	0.31

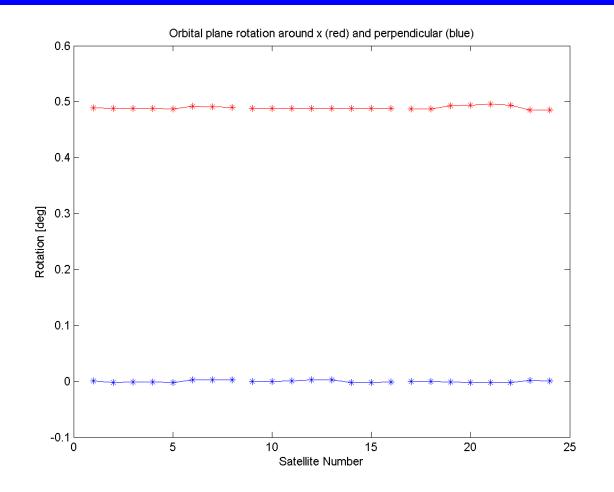
Satellite	RMS (F1_)	RMS(GL-1)	RMS(GL-2)
17, plane 3	0.02	0.36	0.42
18, plane 3	0.01	0.60	0.36
19, plane 3	0.02	0.33	0.30
20, plane 3	0.02	0.39	0.29
21, plane 3	0.02	0.36	0.39
22, plane 3	0.01	0.34	0.80
23, plane 3	0.01	0.38	0.24
24, plane 3	0.01	0.35	0.40

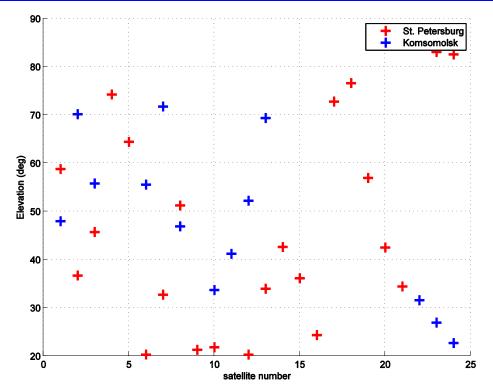
Plane(s)	Rot x (")	Rot y (")	Rot z (")	RMS (m)
1	-1762.83	5.40	2.06	56.1
2	-1763.44	5.20	2.18	54.8
3	-1763.47	5.81	2.04	81.4
all	-1763.25	5.28	2.09	70.7

Rotation of GLONASS GL-2 Broadcast Orbits w.r.t. CODE 1-d orbits F1_ , separately for each orbital plane. \rightarrow no plane-specific systematics.

- The GLONASS Broadcast orbits GL-1 are consistent with the CODE precise orbits F1_ up to April 1st 2014, 20^h59^m UTC.
- All GLONASS Broadcast Orbits of type GL-2 show a rotation w.r.t. the CODE precise orbits F1_ within the time interval April 1, 2014, 21^h00^m April 2, 07^h00^m UTC.
- The rotation takes place almost uniquely around the x-axis of the inertial equatorial coordinate system.

The GLONASS April 1/2 event was almost a "nonevent" in the IGS, because


- Only about 1/3 of the GLONASS tracking data were missing in the time slot April 1, 21^h UT to April 2, 7^h UT.
- only combined GPS/GLONASS products (and no GLONASS-only products) are generated,
- > no highly time-resolved products are generated,
- > the conventional IGS analysis is performed calendar day by calendar day (UT) and
 - only 3 hours of GLONASS data were affected on April 1st,
 - only 7 hours of GLONASS data were affected on April 2nd.


The result of slide 17 was independently checked:

- The differences of the orbit normal vectors of the GLONASS orbital planes, using correct & corrupted messages, respectively, were decomposed into a rotation about the x-axis and one perpendicular to it.
- The following figure shows that only the rotation about the x-axis differs significantly from zero – and corresponds to the values obtained with the standard method.

Epilogue: At the time of transition "back to normal" the satellites were visible (with an elevation of >20 deg) from at least one of the Command Tracking Sites on Russian Territory.

