

## Nibbles

Professor Brad Parkinson

Stanford University



### Three Essential Attributes for any GNSS: the Three A's.

- <u>Availability</u> (Metric- minutes of <u>unavailability per day</u>) <u>Drivers:</u>
  - Satellite Geometry
  - Clear and truthful Reception
- <u>A</u>ffordability (Metrics: 1. Total Amortized *cost per satellite-year* [on orbit], 2. Cost of User Equipment [with req. interference resistance])
  Drivers:
  - Cost of Satellite (driven by complexity and SWAP)
  - Cost of Booster and Satellites/Booster
  - Satellite Lifetime
- <u>A</u>CCUFACY (Metrics: 1. PNT 2σ accuracy, 2. Inaccuracy "bound" (3 or 4σ), 3. "Integrity" Probability that PNT Safety of Life value [10<sup>-7</sup>?] is exceeded)

**Drivers:** 

- Satellite Geometry
- Ranging Accuracy

Geometric (un)Availability is strongly dictated by number of slots in GPS Constellation

#### Geometric Availability: First Measure of Effectiveness

(Unavailability of GPS due to Constellation size and *Moderate* Terrain or obstructions)



### First Measure of Effectiveness

(Unavailability of GPS due to Constellation size and *Steeper* Terrain)



#### The Message:

A **33 slot constellation** is required for reasonable availability when user is *"sky impaired"* in cities or rugged terrain

### Affordability and <u>Geometric</u> Availability <u>Co-Dependency</u>



### First set of Nibbles (aim for 33+X sats):

#### Guidelines

- 15 to 18 Full-up Satellites
- The Nibbles: additional 15 to 18 GPS only Satellites,
  (<u>all</u> Navigation signals but no surge power or addl payloads except laser reflectors)
- Goal
  - Greatly Reduced Cost per Satellite year on-orbit
- Approach:



### Nibbles – Satellite SWaP



- Design Architecture
  - Only "additional" payload is Laser Reflector
  - Smaller Commercial Bus



- Power Requirements (Current Payload ~2200W)
- Shading Angle Spec 5° changed to 20°
  - With affordable 30+X, many Satellites above 20 degrees
  - Reduce Satellite antenna complexity (12 to 4 Elements?)
  - Total Power reduced  $\sim 0.6 \text{ dB}$
- Spec RF Power at 20° Elevation reduced by 1.5dB
- Total reduction 40% (2.1dB)



- **RF Power Conversion Efficiency**
- Convert from GaAs (25-30%) to GaN (35-50%) or TWTAs (50-65%)



#### Nibbles can greatly reduce the Satellite Heat Rejection Requirement



### Nibbles – Satellite SWaP





#### **Design Architecture**

- Only "additional" payload is Laser Reflector
- Smaller Commercial Bus



#### Power Requirements (Current Payload ~2200W)

- Shading Angle Spec 5° changed to 20°
  - With affordable 30+X, many Satellites above 20 degrees
  - Reduce Satellite antenna complexity (12 to 4 Elements?)
  - Total Power reduced  $\sim 0.6 \text{ dB}$
- Spec RF Power at 20° reduced by 1.5dB
- Total reduction 40% (2.1dB)



#### **Power Efficiency**

Convert from GaAs (30%) to GaN or TWTAs



#### **Additional Nibbles**

- Lithium Ion Batteries
- State of Art Solar Array Efficiency



### Power Reduction leads to Proportionate Overhead Reductions

- Battery Size
- EOL Reserves for Solar Array
- S/A Failure Reserves and Design Margin

### **Cautions and Decisions**

- Must Maximize use of "existing" designs and components
- Some "overhead" is hard to shrink
- TWTA's
  - Subtle consequences for a Nav Ranging Signal?
- Degrees of
  - Hardening
  - Redundancy (Design Life)
- Nibblesats do not have added payloads

### Estimated Value of Nibbles

(All in Brad \$, exact exchange rates to US\$, Euros or Yen not determined)

| Туре      | Satellite<br>Cost<br>(Amortized) | Sats/<br>Booster | Booster<br>Cost | "C"<br>Cost of<br>Sat on<br>Orbit | ~Number<br>of Sats for<br>\$500M/yr |
|-----------|----------------------------------|------------------|-----------------|-----------------------------------|-------------------------------------|
| Current   | \$220M                           | 1                | \$230M          | \$450M                            | ~ 1                                 |
| III Dual  | \$220M                           | 2                | \$240M          | \$340M                            | ~1.3                                |
| "Nibbled" | \$60M                            | 2                | \$200M          | \$160M                            | 3                                   |
|           | \$55M                            | 3                | \$210M          | \$125M                            | 4                                   |
|           | \$50M                            | 4                | \$240M          | \$110M                            | Almost 5                            |

### The argument for NibbleSats

- At \$450M/\$150M, can trade 3 for 1, incremental cost.
- If basic is 18 IIIAs at 450M\*18 = \$8.1B
- Alternatives for Additional Satellites
  - 6 IIIAs at \$450M = \$2.7B (total 24 Sats)
  - 12 NibbleSats at \$150M = \$1.8B (total 30 Sats)

What about the small reduction in Radiated power with "nibbled" Satellite?

- Availability (Metric- minutes of *unavailability per day*)
  - Geometry
  - Clear and truthful Reception

### Leads to Nibbles Part 2

- Cost of User Equipment (interference resistance)
- <u>A</u>CCUTACY Metrics: PNT 2σ, Inaccuracy "bound" (3σ), Probability that PNT Safety of Life value is exceeded ("integrity")
  - Geometry
  - Ranging Accuracy



### "Nibbles" Part 2 - Jam Resistance Techy-talk

How to get > 35 dB of Improved Receiver Performance *for Commercial Aircraft* 

| Technique                                                                                                                                        | Range of improvement |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
| Aircraft Shading                                                                                                                                 | 5-10 dB              |  |  |  |
| Inertial And Averaging<br>(MEMS, CSAC, Kasovich Devices)                                                                                         | 8-12 dB              |  |  |  |
| Wider Spreading GNSS Signal<br>(e.g. L1C)                                                                                                        | 5 dB                 |  |  |  |
| Digital Beam Forming Antenna                                                                                                                     | 20-30 dB             |  |  |  |
| "Spilker" Vector Receiver<br>(A powerful form of frequency diversity)                                                                            | At least 10 dB       |  |  |  |
| Potential Total Improvement                                                                                                                      | 48 –67 dB            |  |  |  |
| In addition – A credible reliable <u>backup</u> should be included:<br><u>Recommended</u> – Either selectively Retained (upgraded) DME or eLoran |                      |  |  |  |



#### Effective Areas of 1KW Jammer Against GPS A/J "Nibbles"

Paytes 608 9

608

214 Warmand 219 Mg

### Nibbles Part 2 – Considerations for Receiver improvements

- Affordability
  - Safety of Life vastly different Threshold of \$ Pain
  - Synergy with WB Aircraft Antenna Inertial Pointing
  - Expanded market drives down cost (cell phone camera)
- FAA Role push for Interference-Resistant Receiver Specs
- Industry Role
  - Prototype and Develop Robust Receivers

# Summary – Nibbling to improve the Three Essential Attributes

- Availability (Metric- minutes of *unavailability per day*)
  - Deploy ~ ½ Nibbled Satellites for ≥ 30+X constellation
  - Focus on Nibbled Technology for Receivers
- <u>A</u>ffordability Metrics:
  - Nibble on size weight and power to insure multiple-Launch, Affordable Satellites
  - Ride Digital Wave for Beam Steering plus Vector Receiver
- <u>A</u>CCUTACY Metrics: PNT 2σ, Inaccuracy "bound" (3σ), Probability that PNT Safety of Life value is exceeded ("integrity")
  - Affordability leads to Improved Geometry (Esp. Sky Impaired users)
  - Multiple Frequencies and L1C Improves Ranging Accuracy

<u>Accolades</u> to Groups developing "Nibbling" Plans and Programs to improve the 3 A's

- The GPS Directorate at SMC
- Various Contractors
- Advocacy by GPS IRT
- Support by USAF Space Command



