

Considerations for Constellation Sustainment

Brief to National PNT Advisory Board

9 November 2011

11/14/2011

Maintaining the current level of GPS Services

What are the challenges? What are the opportunities to Mitigate?

What has been Analyzed

Examined alternate means of delivering global GPS positioning, and time services (GPtS)

- Maintain current level of service & enable improved service
- Considered different orbits, platforms, & signal sources
- Remain within context of GPS III program & budget
- Consider impact on cost of launch

What is required for the future?

Dramatic Improvement in Availability of Accuracy with 30+ SVs

First Measure of Effectiveness-Availability (Unavailability of GPS due to Constellation size and Terrain or Buildings)

Outage Minutes/day-Masking 45 degrees DUU Total outages of 2 to 5 hours with 24 slots 500 **Dutage Minutes/Day** 400 Total outages of 20 min to 1 hr 20 min with 27 slots 300 200 **Total outages are** negligible with 33 slots 100 0 24 30 33 Satellite slots in Constellation

Why the sustainment concern?

Factors considered

- Rate of satellite failures
- Rate of replenishment (Launches/yr)
- Program Funding

On Orbit Costs

(Approximate & Estimated)

Current Program not Sustainable

Options Examined

Jan GEO

- GPS III boosted to GEO
- Hosted GPS III payload on commercial GEO of opportunity
- Hosted transponder payload on commercial GEO of opportunity
- Partner with other agencies' GEOs (e.g., FAA, NASA) to add GPS signals
- Je MEO
 - GPS III dual-launched
 - GPS Spartan (GPS III w/o other payloads), dual launched
 - GPS Limited (less than full signal set)
- JEO
 - Hosted GPS III (partial) or transponder payload
 - Used as near-band pseudolites or signals of opportunity
- Non-space
 - Pseudolites (terrestrial & airborne)
 - eLoran & signals of opportunity

11/14/2011

Analysis Criteria

Service performance attributes

 Assured availability (geometry), accuracy, anti-jam (AJ, signal power), bounded inaccuracy, integrity

Technical issues

- Integration of payload, plus control of payload & satellite
- Space, weight, & power, plus cost (SWaP-C)
- Configuration & launch options
- User equipment impacts
- Scheduling issues
 - Hosted ride opportunities & constraints
 - Business case for hosted secondary payloads
- Other issues
 - Policy
 - Vulnerabilities & risks
 - Other agency interests user equipment impacts

Overview

Potential & realistic GEO & MEO options

- Used individually or in combination
- Enable timely implementation of new capabilities & services
- Challenges: timing/availability, location, & operational control
- FAA's "WAAS-enabled" algorithms to enable GEO tracking in UE
- Feasible LEO options eliminated from further discussion
 - Requires major new operational & ground infrastructure
 - Require new or significantly upgraded user equipment
 - Limited benefit in comparison to GEO & MEO options
- Other options eliminated from further discussion
 - Require new ops concepts, new ground infrastructure, or both
 - Benefit limited geographic area; visibility & shading challenge
 - Some interesting concepts that require more study & test data

GEO-MEO Findings

I GEO = 3 MEOs

- 2 GEOs, separated by about 15° or more longitude, almost same as adding 6 MEOs
- Today GEOs provide civil (L1 & L5) signals
 - FAA's WAAS provides 2 (3) in US National Airspace System
 - In Western Hemisphere, provides redundant 2-GEO coverage
 - For foreseeable future (until 2040 ... or longer)
 - Other nations & regions provide/plan WAAS-equivalent services
 - Europe's EGNOS (3 GEOs), Japan's MSAS (2 GEOs), India's GAGAN (at least one GEO planned), potentially others
- Replacement GEOs could broadcast civil and military
 - NASA's TDRSS could add L-band beginning mid-late 2010s

GEO-MEO Analyzed Options

GPS III GEO

- GPS III payload hosted on commercial GEO of opportunity
- GPS III boosted to GEO
- GPS III payload on custom GEO bus ("Spartan" GEO)

GPS III MEO

- Continue GPS III program as currently planned
 - Dual-launch capable by SV 5-6, weight reduction in SV 9+
- GPS III payload on custom MEO bus ("Spartan" MEO)
- Launch options
 - EELV & GPS III dual-launch MEO, single-launch GEO
 - EELV & Spartan multiple launch MEO or GEO
 - Commercial (eg, Falcon 9) & GPS III single-launch MEO
 - Commercial & Spartan multiple launch MEO or GEO

Baseline Assumptions

 2016 GPS constellation continues operating in "Expanded 24" (27-slot) configuration

- Ready for expansion to 30 slots or equivalent

- Baseline constellation includes
 - GPS III (4), IIF (12), IIR-M (7), IIR (4) in 27 primary slots
 - With remaining useful IIR-M & IIR (< 9 total) in residual slots
 - 27 operational & up to 9 residual, plus 4 GPS III (under contract) SVs with NDS capability
- Alternate architectures deployable beginning 2016

Recommendations

- Expand capability to 30 slots (or equivalent) utilizing alternate constellations
 - Beginning no later than 2016
- Develop GPS III Spartan (dual launch able GPS Nav-payload only)
 - Prepare for MEO or GEO (slight modification to antenna)
- Continue GPS III as planned (SV 9+)
 - But more aggressive weight reduction & smaller bus
 - If keeping NDS, no more than IIR SWaP, including antenna
- Prepare & stage GPS navigation payloads (1-3) for hosted rides
 - Integration plans for ½ payload panel all US std GEO buses
- Partner with FAA & NASA for improved GEO services
 - Take advantage of increased geometry with addition to next generation NASA TDRSS SVs
 - Broadcast all civil signals from WAAS and work for other SBASs' GEO systems to provide the same

Implementation GPS-Based MEO-GEO Service 2016+

- Retain Expanded 24 (27 slot) MEO constellation
 - Sustain with GPS III & Spartan MEO (multiple launch)
- Use ranging signals from WAAS & other GNSSs' SBAS
 - SBAS provide L1 & L5 civil signals in GEOs' downlink coverage
 - Adds "30-MEO-equivalent" geometry for US & global civil users
- Increased coverage for civil & military where needed with GEOs
 - Provides for 30-MEO-equivalent geometry where/when needed
 - Work with FAA to add L2 to WAAS (over Homeland AOR)
 - Seek opportunity(ies) for hosted ride GEO(s) when available
 - E.g., satellite TV over Africa
 - Boost GPS III or Spartan to GEO in other needed location (s)

• E.g., initially of SW & SE Asia, plan to move as needed

Bottom Line

Opportunities exist to sustain & potentially provide increased capabilities & service at the same or lower on-orbit costs than current GPS III Program.

- These can be provided through a range of different configurations & orbits
- Dual-launch becomes a significant need for reducing on orbit costs and insuring sustainment of current level of service.
- Development of a "Spartan GPS Only Satellite that is dual- launch capable with ability to be flown at both MEO and GEO satellite is needed for sustainment and increased capability
- FAA WAAS broadcasting all civil signals provides considerable improved service in North America
- NASA TRDSS provides opportunity to improve service globally

Final note: JFCC Space has plans to turn on orbit residual Satellites should there be a significance decrease in service performance.

