Regional monitoring of Cascadia tectonics

Timothy I. Melbourne
Pacific Northwest Geodetic Array (PANGA)
Department of Geological Sciences
Central Washington University

Rex Flake Aaron Mayfield Megan Kostick
Andrew Miner Rodger Wilson Rosie Stahl
Marcelo Santillan Ana Aguiar Kyle Kinkade
Craig Scrivner James Chapman Wendy Stockwell
Walter Szeliga Ivan Rabak Sergio Abundiz
Outline

• The Cascadia subduction zone
• Lessons from Japan & the 2011 M9 Tohoku earthquake
• Saving lives with real-time GPS
Cascadia Subduction Zone

Earthquake magnitude is proportional to fault size
Cascadia today: 20y of GPS
Cascadia:
36 mm/yr loading rate
Coast moves ~2 cm/yr today
Margin-wide recurrence: 550 years (var ~200 yrs)
311 years into the eq cycle
10 meters of post-1700 accumulated slip deficit
Last eq appears to have been margin-wide (M9)
Moment, damage ~ width of seismogenic zone
470 Cascadia rtGPS

1000 Japanese rtGPS
東北地方太平洋沖地震に伴う海底の動き（水平）
Slow Slip

Dragert, Wang and James, 2001
August 2010 GPS Displacements

Horizontal

Vertical
May 2008
M=6.5

Fault slip

0 10 20 30 40

5 mm
Many magnitude 6s

Chapman and Melbourne., 2009

Szeliga et al., 2008
• ~Half of convergence is accommodated by large ETS events
• All imaged slip occurs below 25 km depth, above 40 km
• But max slip ~ 1/smoothing
ETS delineates a 25 km lower limit to interseismic strain accumulation

After Hyndman, Dragert, Wang, etc, 1992-2003
Testing this model:

- It should replicate current GPS data (which has many new stations)
- Run in reverse, it needs to satisfy paleoseismic constraints
Test 1: comparison with current interseismic deformation:

36 mm/yr
GPS stations with ~10 years of measurements

Data from Leonard et al, 2004

ETS-delineated coupling model:
Replicates gross distribution of paleoseismic subsidence

Chapman and Melbourne 2009
A rough forecast of future slip after full recurrence interval
Why rtGPS? Tohoku in Cascadia

No stable reference station in a 2-state radius!

USGS, M9, 30m max slip
Concluding thoughts

• The Cascadia subduction zone will have great earthquakes
• Real-time GPS network is in place
• Data analyses are evol
• Saving lives with real-time GPS