CRIA Research and Innovative Technology Administration

Civil PNT Policy and Utility

Civil GPS Service Interface Committee U.S. States and Local Government Subcommittee Sacramento, CA August 23, 2011

> Timothy A. Klein Senior Policy Advisor/RITA NDGPS Coordinator <u>NDGPS@dot.gov</u>

GPS is a Critical Component of the Global Information Infrastructure

Surveying, Mapping, GIS

- Surveying is essential to any new development
 - Electrification
 - Telecom tower placement
 - Pipeline installation
 - Dam construction
 - Port dredging
- GPS enables 2-5 cm real-time positioning accuracy (RTK)
 - Mm-level accuracy possible with post-mission data processing
- 100%-300% savings in time, cost, labor
 - Stakeless, paperless surveys

Construction, Mining

- Faster site preparation
- Enhanced management of assets, equipment
 - More efficient asset utilization
 - Less idling of workers, machinery
- Precise <u>automated</u> machine control
 - Up to 70% increased job site productivity
 - Saves time, fuel, and emissions
 - Reduces maintenance
 - Prevents accidents
- Automated, wireless job tasking
 - Smaller, more empowered workforce no foreman
 - Real-time progress tracked remotely

Agriculture

- Improved management of land, machinery, personnel, time
 - Optimized placement of crop rows, seeds
 - Enhanced monitoring of crop yields, soil quality, problems
 - Automated, 24-hour operations using lighter equipment, less fuel, less labor
- Plant-specific applications of water, fertilizer, pesticides, herbicides
 - Up to 80% increase in efficiency
- Greater crop yields, profit margins
- Environmental benefits
 - Reduced chemical use
 - Precise leveling of fields reduces runoff
 - Strip tillage/no tillage releases less CO2
 - Reduced CO2 emissions from lighter, more efficient machinery

This grain combine can be outfitted with a GPS receiver, yield monitor, and electronic sensors to track crop production based on location. These data can be transferred to a geographic information system to create a yield map and subsequently used to analyze the field and make sitespecific management decisions.

Timing

- GPS offers an inexpensive alternative to highmaintenance timing equipment, networks
- Synchronization, management of communication networks
 - Phones, pagers, wireless systems
 - LANs, WANs, Internet, satellites
 - Cell phone tower handoffs
 - Digital TV
- Financial transactions
 - Stock exchanges
 - ATMs
 - E-commerce
- Power grid management
 - Load balancing
 - Fault detection, location

U.S. Department of Transportation Research and Innovative Technology Administration

Disaster Management

- Assists in disaster planning efforts such as flood plain mapping
- Structure monitoring
 - Lock and dams
 - Levees
 - Bridges
- Helps relief workers navigate disaster areas devoid of landmarks
- Facilitates containment and management of wildfires
- Enables disaster warning systems
 - GPS-equipped buoys for tsunami warnings
 - GPS ground networks monitor crustal motion, earthquakes
- Enables emergency response
 - E-911
 - NG-911 (text, video, Facebook, tweets)

Environmental Stewardship

- Climate monitoring
 - Sea level rise measurements
 - Ice sheet change observations
 - Atmospheric moisture profiles
- Reduced greenhouse gas emissions
 - Efficient routing of aircraft, trucks, and other vehicles
 - Reduction of vehicle fleet idle times
- Oil and chemical spill cleanup
 - Positioning, modeling of spills to guide remediation efforts
- Commercial fishing
 - Enforcement of fishery boundaries
- Forestry
 - Safe and efficient lumbering
 - Monitoring of illegal deforestation
- Harbor and inland waterway dredging
 - Maintain/improve transportation channels
 - Dredge and dispose

New Applications Appear Every Day

- Mobile applications
 - Location based services
- Localized GIS datasets
- Personal, pet safety
- GPS radio occultation
- Road use taxation

FAA GPS Augmentation Programs

WAAS Architecture

38 Reference Stations

3 Master Stations 4 Ground Earth Stations

(2+1) Geostationary Satellite Links

2 Operational Control Centers

Nationwide Differential GPS

- Expansion of maritime differential GPS (DGPS) network to cover terrestrial United States
- Built to international standard adopted in 50+ countries

National Continuously Operating Reference Stations (CORS)

- Enables highly accurate, 3-D positioning
 - Centimeter-level precision
 - Tied to National Spatial Reference System
- 1,500+ sites operated by 200+ public, private, academic organizations

- NOAA's Online Positioning User Service (OPUS) automatically processes coordinates submitted via the web from around the world
- OPUS-RS (Rapid Static) declared operational in 2007
- NOAA considering support for real-time networks

GPS-Based Applications are Critical to Major DOT Initiatives

Aviation – NextGen

Reliable and accurate positioning worldwide Reduced delays More fuel-efficient routes Increased system capacity with enhanced safety

Rail – Positive Train Control

Increased efficiency and

Rapid rail structure and

conditioning mapping

capacity

Reduced probability of collisions

ITS/Connected Vehicle

Enable crash prevention among vehicles and between vehicles and infrastructure Increased mobility and reduced environmental impact

What Are We Trying to Get to?

- Intelligent Transportation Systems (ITS) Safety Applications for all Surface Modes of Transportation
 - Leverage technology to make vehicles discoverable to other vehicles, infrastructure, and pedestrians
 - Enable 360° situational awareness to the vehicle and driver
- Intelligent Railroad Systems
 - Assessing HA-NDGPS for meeting requirements
 - Positive Train Control
 - Track Defect Location
 - Automated Asset Mapping/Surveying

Where are States Trying to Get to?

- GPS Enforcement of Designated Truck Routes
 - Illinois State Legislature required study
 - Illinois DOT study makes eight recommendations for truck GPS systems
 - Vertical clearance
 - Weight restrictions
 - Communications and enforcement of truck GPS systems
- Automated Vehicle Location (AVL) Systems for Data Collection
 - 2011 VDOT Survey
 - Road weather management systems
 - Near-real-time road conditions
 - Mapping noxious weed control
 - Tracking incarcerated workers

Easy to Purchase GPS Jamming Devices

- Growing market for low-cost GPS jammers
 - Concern over being tracked using GPS, particularly among those driving a company or fleet vehicle
- Many devices are battery-operated or can be plugged into a cigarette lighter
- Sold as "privacy protectors"

17

Affect of GPS Jamming Devices

RFI source "Locked-on" and pursued.

On Site ON-OFF tests confirms GPS RFI source.

LightSquared

The Way Ahead

- LightSquared agrees that transmissions in the upper 10 MHz channel the channel nearest to the 1559-1610 MHz GPS band —will adversely affect the performance of a significant number of legacy GPS receivers.
- LightSquared's Proposed Solution
- -First, it will operate at lower power than permitted by its existing FCC authorization.
- LightSquared ATC stations during Las Vegas Live Sky Tests were transmitting at 10% of FCC authorized power (32 dBW). They intend to operate in the lower 10 MHz block of their network at this power level for an undefined period of time.
- -Second, LightSquared will agree to a temporary standstill in the terrestrial use of its upper 10 MHz of its frequencies immediately adjacent to the GPS band.

LightSquared (2)

-Six months into the standstill period, LightSquared will commence a process of working with the Commission (FCC) and NTIA to explore options to enable mutual GPS and LightSquared operations at/near the band borders."

• Third, LightSquared will commence terrestrial commercial operations only on the lower 10 MHz portion of its spectrum.

-They will coordinate and share the cost of underwriting a workable solution with GPS manufacturers of legacy precision measurement devices that may be at risk.

– LightSquared still plans to use the lower 10 to deliver service within two years, much shorter than the projected time to research/replace highprecision receivers and dependent systems.

LightSquared (3)

The Coalition to Save Our GPS States:

- Until it can be conclusively shown that there will be no interference to critical GPS uses, LightSquared should not be allowed to deploy in the upper or lower MSS band.
- The Coalition further notes that LightSquared already owns valuable high quality spectrum assets, including 59 MHz of nationwide ubiquitous spectrum in an advantageous frequency position."
- On June 30 the FCC issued a Notice seeking public comment on the three LightSquared recommendations. Comments were filed by July 30 and reply comments by August 15, 2011.

LightSquared (4)

Projected transportation impacts:

- FAA/RTCA assessment projects over ten years -
 - \$70 Billion impact to industry in re-equipage
 - Loss of 800 lives due to safety impacts
 - Significant NextGen delay, \$17 billion cost
- FRA assessment projects over ten years
 - Loss of \$15 billion in productivity costs
 - Significant Positive Train Control delay; \$5.3 billion cost
- MARAD assessment projects over ten years
 - \$30 billion in hull, cargo and oil pollution costs from ship groundings and collisions
 - Indeterminate loss of life, economic losses

LightSquared (5)

Projected transportation impacts:

- Highway/transit assessment projects over ten years
 - \$1.4 Billion impact to industry and state/local agencies
 - Loss of lives due to safety impacts
 - Significant ITS deployment delays, \$2 billion cost

Department of Transportation:

- Supports NTIA's request to FCC for delay in approval until testing complete on lower 10 scenario
- Committed to working with all parties to find a technical solution that supports the National Broadband Plan and GPS safety requirements

Dish Network Filing:

- Relies on LightSquared waiver; again not ancillary
- Uses S-band [2GHz], not L-band, so no GPS issues

