Civil PNT Policy and Utility

Civil GPS Service Interface Committee
U.S. States and Local Government Subcommittee
Sacramento, CA
August 23, 2011

Timothy A. Klein
Senior Policy Advisor/ RITA NDGPS Coordinator
NDGPS@dot.gov
GPS is a Critical Component of the Global Information Infrastructure

- Satellite Operations
- Power Grids
- Personal Navigation
- Aviation
- Communications
- Surveying & Mapping
- Disease Control
- Trucking & Shipping
- Oil Exploration
- Fishing & Boating
- Surveying & Mapping
- Disease Control
- Trucking & Shipping
- Oil Exploration
- Fishing & Boating
Surveying, Mapping, GIS

- Surveying is essential to any new development
 - Electrification
 - Telecom tower placement
 - Pipeline installation
 - Dam construction
 - Port dredging
- GPS enables 2-5 cm real-time positioning accuracy (RTK)
 - Mm-level accuracy possible with post-mission data processing
- 100%-300% savings in time, cost, labor
 - Stakeless, paperless surveys
Construction, Mining

- Faster site preparation
- Enhanced management of assets, equipment
 - More efficient asset utilization
 - Less idling of workers, machinery
- Precise automated machine control
 - Up to 70% increased job site productivity
 - Saves time, fuel, and emissions
 - Reduces maintenance
 - Prevents accidents
- Automated, wireless job tasking
 - Smaller, more empowered workforce – no foreman
 - Real-time progress tracked remotely
Agriculture

- Improved management of land, machinery, personnel, time
 - Optimized placement of crop rows, seeds
 - Enhanced monitoring of crop yields, soil quality, problems
 - Automated, 24-hour operations using lighter equipment, less fuel, less labor
- Plant-specific applications of water, fertilizer, pesticides, herbicides
 - Up to 80% increase in efficiency
- Greater crop yields, profit margins
- Environmental benefits
 - Reduced chemical use
 - Precise leveling of fields reduces runoff
 - Strip tillage/no tillage releases less CO2
 - Reduced CO2 emissions from lighter, more efficient machinery
Timing

- GPS offers an inexpensive alternative to high-maintenance timing equipment, networks
- Synchronization, management of communication networks
 - Phones, pagers, wireless systems
 - LANs, WANs, Internet, satellites
 - Cell phone tower handoffs
 - Digital TV
- Financial transactions
 - Stock exchanges
 - ATMs
 - E-commerce
- Power grid management
 - Load balancing
 - Fault detection, location
Disaster Management

- Assists in disaster planning efforts such as flood plain mapping
- Structure monitoring
 - Lock and dams
 - Levees
 - Bridges
- Helps relief workers navigate disaster areas devoid of landmarks
- Facilitates containment and management of wildfires
- Enables disaster warning systems
 - GPS-equipped buoys for tsunami warnings
 - GPS ground networks monitor crustal motion, earthquakes
- Enables emergency response
 - E-911
 - NG-911 (text, video, Facebook, tweets)
Environmental Stewardship

- Climate monitoring
 - Sea level rise measurements
 - Ice sheet change observations
 - Atmospheric moisture profiles
- Reduced greenhouse gas emissions
 - Efficient routing of aircraft, trucks, and other vehicles
 - Reduction of vehicle fleet idle times
- Oil and chemical spill cleanup
 - Positioning, modeling of spills to guide remediation efforts
- Commercial fishing
 - Enforcement of fishery boundaries
- Forestry
 - Safe and efficient lumbering
 - Monitoring of illegal deforestation
- Harbor and inland waterway dredging
 - Maintain/improve transportation channels
 - Dredge and dispose
New Applications Appear Every Day

- Mobile applications
 - Location based services
- Localized GIS datasets
- Personal, pet safety
- GPS radio occultation
- Road use taxation
FAA GPS Augmentation Programs

WAAS
Enroute Oceanic
Enroute Domestic
Terminal
Approach
Surface

LAAS
U.S. Department of Transportation
Research and Innovative Technology Administration
WAAS Architecture

38 Reference Stations
3 Master Stations
4 Ground Earth Stations
(2+1) Geostationary Satellite Links
2 Operational Control Centers
Nationwide Differential GPS

- Expansion of maritime differential GPS (DGPS) network to cover terrestrial United States
- Built to international standard adopted in 50+ countries
National Continuously Operating Reference Stations (CORS)

- Enables highly accurate, 3-D positioning
 - Centimeter-level precision
 - Tied to National Spatial Reference System
- **1,500+** sites operated by 200+ public, private, academic organizations

- NOAA’s Online Positioning User Service (OPUS) automatically processes coordinates submitted via the web from around the world
- OPUS-RS (Rapid Static) declared operational in 2007
- NOAA considering support for real-time networks
GPS-Based Applications are Critical to Major DOT Initiatives

Aviation – NextGen
Reliable and accurate positioning worldwide
Reduced delays
More fuel-efficient routes
Increased system capacity with enhanced safety

Rail – Positive Train Control
Reduced probability of collisions
Increased efficiency and capacity
Rapid rail structure and conditioning mapping

ITS/Connected Vehicle
Enable crash prevention among vehicles and between vehicles and infrastructure
Increased mobility and reduced environmental impact
What Are We Trying to Get to?

• Intelligent Transportation Systems (ITS) Safety Applications for all Surface Modes of Transportation
 – Leverage technology to make vehicles discoverable to other vehicles, infrastructure, and pedestrians
 – Enable 360° situational awareness to the vehicle and driver

• Intelligent Railroad Systems
 – Assessing HA-NDGPS for meeting requirements
 • Positive Train Control
 • Track Defect Location
 • Automated Asset Mapping/Surveying
Where are States Trying to Get to?

• GPS Enforcement of Designated Truck Routes
 – Illinois State Legislature required study
 – Illinois DOT study makes eight recommendations for truck GPS systems
 • Vertical clearance
 • Weight restrictions
 • Communications and enforcement of truck GPS systems

• Automated Vehicle Location (AVL) Systems for Data Collection
 – 2011 VDOT Survey
 • Road weather management systems
 • Near-real-time road conditions
 • Mapping noxious weed control
 • Tracking incarcerated workers
Easy to Purchase GPS Jamming Devices

- Growing market for low-cost GPS jammers
 - Concern over being tracked using GPS, particularly among those driving a company or fleet vehicle
- Many devices are battery-operated or can be plugged into a cigarette lighter
- Sold as “privacy protectors”
Affect of GPS Jamming Devices

RFI source “Locked-on” and pursued.

On Site ON-OFF tests confirms GPS RFI source.
LightSquared

▪ The Way Ahead

▪ LightSquared agrees that transmissions in the upper 10 MHz channel—the channel nearest to the 1559-1610 MHz GPS band—will adversely affect the performance of a significant number of legacy GPS receivers.

▪ LightSquared’s Proposed Solution

– First, it will operate at lower power than permitted by its existing FCC authorization.

• *LightSquared ATC stations during Las Vegas Live Sky Tests were transmitting at 10% of FCC authorized power (32 dBW). They intend to operate in the lower 10 MHz block of their network at this power level for an undefined period of time.*

– Second, LightSquared will agree to a temporary standstill in the terrestrial use of its upper 10 MHz of its frequencies immediately adjacent to the GPS band.
LightSquared (2)

– Six months into the standstill period, LightSquared will commence a process of working with the Commission (FCC) and NTIA to explore options to enable mutual GPS and LightSquared operations at/near the band borders.

• Third, LightSquared will commence terrestrial commercial operations only on the lower 10 MHz portion of its spectrum.

– They will coordinate and share the cost of underwriting a workable solution with GPS manufacturers of legacy precision measurement devices that may be at risk.

– LightSquared still plans to use the lower 10 to deliver service within two years, much shorter than the projected time to research/replace high-precision receivers and dependent systems.
The Coalition to Save Our GPS States:
• Until it can be *conclusively shown that there will be no interference to critical GPS uses*, *LightSquared should not be allowed to deploy in the upper or lower MSS band.*
• The Coalition further notes that — *LightSquared already owns valuable high quality spectrum assets, including 59 MHz of nationwide ubiquitous spectrum in an advantageous frequency position.*”
• On June 30 the FCC issued a Notice seeking public comment on the three LightSquared recommendations. Comments were filed by July 30 and reply comments by August 15, 2011.
Projected transportation impacts:

- FAA/RTCA assessment projects over ten years –
 - $70 Billion impact to industry in re-equipage
 - Loss of 800 lives due to safety impacts
 - Significant NextGen delay, $17 billion cost

- FRA assessment projects over ten years –
 - Loss of $15 billion in productivity costs
 - Significant Positive Train Control delay; $5.3 billion cost

- MARAD assessment projects over ten years –
 - $30 billion in hull, cargo and oil pollution costs from ship groundings and collisions
 - Indeterminate loss of life, economic losses
LightSquared (5)

Projected transportation impacts:
• Highway/transit assessment projects over ten years –
 • $1.4 Billion impact to industry and state/local agencies
 • Loss of lives due to safety impacts
 • Significant ITS deployment delays, $2 billion cost

Department of Transportation:
• Supports NTIA’s request to FCC for delay in approval until testing complete on lower 10 scenario
• Committed to working with all parties to find a technical solution that supports the National Broadband Plan and GPS safety requirements

Dish Network Filing:
• Relies on LightSquared waiver; again not ancillary
• Uses S-band [2GHz], not L-band, so no GPS issues