How Early Ties to the National Spatial Reference System Have Advanced Science, Research, and Decision Making for Management of the Colorado River.

Keith Kohl, U.S. Geological Survey, Flagstaff, AZ kkohl@usgs.gov Sediment Conservation Goals:

- Improve shoreline habitats, campsites, and campsite safety by building sandbars and filling gullies and rills through timely High-flow Events.
- Conserving the sediment as a resource by storing the sand above stages reached by typical Glen Canyon Dam operations
- Minimize the amount of sediment transported to and deposited in Lake Mead

Sediment Monitoring Methods:

- 1) Collect continuous sediment flux measurements at the end of each of 5 reaches to determine where and how much sediment has entered the system. Provides 15-minute records of suspended sediment concentrations.
- Survey repeatable maps of channel morphology to compute volumes of sediment change within each reach. Provides cut/ fill maps of channel change at a ~5-year cycle.
- 3) Compare results of the 2 methods to compute a sediment budget where sediment input volumes are calculated to determine if High-Flow Event triggering criteria are reached. (500,000 metric tons of sediment input triggers HFE protocols)

AGU Journal of Geophysical Research: Earth Surface

Figure 1. Map of the Colorado River from Glen Canyon Dam to Lake Mead, Arizona, showing streamflow and sediment-monitoring stations (circles). The reaches used for this study are around the RM30, RM61, and RM87 gages.

Method 1: Suspended sediment flux measurements

Multifrequency acoustical measurements Calibrated pump samples Equal-Discharge-Increment Equal-Width-Increment Velocity-weighted-average Point-sample Array

Provides:

Continuous high quality sediment transport data, at the end of each reach, & in real time! Determines sediment inflow and outflow for each reach.

However:

Uncertainty in continuous flux measurements (+/- 5%) quickly approaches the 500,000 metric ton triggering criteria

Method 2: Repeat measurements of bed morphology:

Multibeam Sonar, Topographic surveying, Underwater camera for substrate calibration Digital imagery, LiDAR (Aerial, boat and tripod-mounted)

Provides:

A 25cm resolution map of riverbed elevations

Delineations of sand, sand-gravel, cobble, bedrock, and vegetation substrate through filtered backscatter A "time-zero" to constrain flux measurements and reset associated error propagations An independent method to compute sediment evacuation or deposition within each reach

However,

Repeat maps require the ~5-year cycle before each of the reaches are to be resurveyed.

Multibeam Sonar Vessel (No GNSS positions; Optically tracked at 20Hz)

Onboard IMU

20Hz Tracking Optical target

GNSS used only for PPS timing

20Hz Temporary Navigation Station

Multibeam and filtered backscatter products

Using this technique we've mapped sediment type over 200 miles of riverbed at 25-cm resolution.

Sediment plume can be tracked!

The uncertainties of uncertainty...

"When the volumes were compared, the flux-based and morphological estimates of net erosion differed by about 150,000 m³ (equivalent to about 0.03 m (3cm) of sand distributed evenly throughout the 50km study area)"

Journal of Geophysical Research Earth Surface Vol118 1-21 doi:10.1002/jgrf.20050,2013

Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: Issues of scale, geomorphic setting, and sampling design

Paul E. Grams,¹ David J. Topping,¹ John C. Schmidt,¹ Joseph E. Hazel Jr.,² and Matt Kaplinski²

Therefore, we require positional (and height!) accuracies commensurate with the scope and scale of the monitoring program (That is: relative accuracies at the 3cm level)

Step 1: Improve and densify the National Spatial Reference System HARN (1992) NAD83(2011)

NGS Bluebooked GNSS campaigns

Year	Project ID	Project name	GCMRC control stations occupied in project		
1992	GPS376	Arizona 1992 HARN survey	L 404, NAVAJO POINT		
1994	GPS404	Nevada 1994 FBN/CBN and FAA airports	AIRPORT		
1994	GPS633	Utah 1994 FBN/CBN	AIRPORT		
1996	GPS1154	1996 Arizona ANA GPS Survey	L 404, NAVAJO POINT		
1999	GPS1347	1999 Arizona FBN Survey	L 404, NAVAJO POINT, SIGNAL HILL, T 96		
1999	GPS1356	Nevada 1999 FBN	AIRPORT, DAVIAN, L 404, NAVAJO POINT		
1999	GPS1370	Utah 1999 FBN	DAVIAN, L 404		
2001	GPS1544	AZ FBN Replacement Survey	DAVIAN, DESERT VIEW, EMIN, L 404		
2003	GPS1871	Grand Canyon Rim	ABYSS, AIRPORT, CAPE, DAVIAN, DESERT VIEW, ECHO, EMIN, FRAZ, GCNRA, JACK, L 404, LFRG, MUSIC MOUNTAIN MINE, SIGNAL HILL, SOUTH CANYON TRAILHEAD, T 96		
2004	GPS2062	Glen Canyon Rec Area, Lake Powell	L 404, LFRG, MARBLE CANYON, BEEHIVE NORTH, BF1, BF2, FH6, R151, DR1, DR2, U148, HC1, HC2, HITE1, HITE2, HITE3, Z114, P115, N141, N373 on the San Juan		
2005	GPS2159	Grand Canyon Rim – Vertical	ABYSS, AIRPORT, DAVIAN, DESERT VIEW, ECHO, EMIN, FRAZ, L 404, LFRG, MUSIC MOUNTAIN MINE, SOUTH CANYON TRAILHEAD, T 96, A511,D7,E78,E487,150DOR,2879,A116, B508,C54,M62,P499,Q61,S285,T61,T403, Z53		
2008	GPS2510	Mohave County – Kingman	MUSIC MOUNTAIN MINE		
2011	GPS2831	2009 Grand Canyon aerial mapping and 2010 Coconino County Height Modernization surveys	ABYSS, AIRPORT, AIRPORT RM 1, AIRPORT RM 2, ALT, APIN, BADGER, BIG, CAPE, CAVE, DAVIAN, DESERT VIEW, DWARF, ECHO, EMIN, EMIN REF 1, FRAZ, GCNRA, JACK, L 404, LFRG, MUSIC MTN MINE, MUSIC MTN REF1, MUSIC MTN REF2, Q 389, R 389, SALT, SALT CANYON, SB POINT, SHIVWITS, SIGNAL HILL, SOUTH CANYON TH, T 96, TENDERFOOT, WHITMORE, CARDENAS, 6866		

Step 2: Develop a GNSS-based control network within Grand Canyon

However, poor GNSS solutions are inherent in deep canyon environments!!

East/West orientations with high-angle (>45°) horizon obstructions South side of river has particularly poor satellite visibility Demands shorter baselines, longer occupations Requires creative outlier detection of poor-fitting solutions More reliance on optical (Total Station) survey methods and less on RTK

Colorado River Network: GNSS Vectors constrained to 27 Published Rim Stations

Colorado River Network: Total Station Vectors Repetitious shots in both forward and reverse face

Network Design

Network Statistics:

38736 Degrees of Freedom
9324 GNSS vectors
8895 Optical Total Station vectors (Repetitious)
1787 Adjusted Stations with redundancy
650 stations with GNSS observations

Assessment	count	vertical uncertainty 95%	horizontal uncertainty 95%
Least-Squares results Constrained to Passive control	n=1787	5.0cm	4.9cm
Least Squares results Vs OPUS projects Primary River Network	n=22	4.6cm	1.7cm
Least-Squares comparisons (Published Control Constrained Vs. Free results)	n=27	3.7cm	1.8cm
Least-Squares comparisons (CRE Stations Constrained Vs. Free results)	n=1713	1.3cm	1.0cm
Least-Squares comparisons (Unpublished Rim Stations Passive Vs. Active results)	n=4	2.0cm	0.9cm
May 2021 Overflight (Passive Constrained, Active Free)	n=9	4.3cm	2.7cm
May 2021 Overflight (Passive Free, Active Constrained)	n=12	3.4cm	3.0cm
May 2021 Overflight (Passive Free, Active Constrained) excluding 3 airport control stations	n=9	3.3cm	2.1cm

Least-squares Adjustment results of the Colorado River Network

n=1783 Adjusted Stations: 95 Percentile Horizontal @ 2σ = 5.0 cm 95 Percentile Vertical @ 2σ = 4.9 cm

n=542 Adjusted GNSS Stations: 95 Percentile Horizontal @ 2σ= 1.1 cm 95 Percentile Vertical @ 2σ = 3.0 cm

Network Relative Accuracies (FGDC Chapter 2) Constrained Vs. Unconstrained

SB_POINT

TENDERFOOT

CAVE

SIGNAL HILL

MARBLE CANYON

ECHO

SCTH

alack Me.

DESERT VIEW

EMIN REFI

Max Horizontal Delta = 1.8 cm at GCNRA Max Vertical Delta = 6.6 cm at Music Mountain (90km from Colorado River) RMSE95 Horizontal = 1.8 cm RMSE95 Vertical = 3.7 cm n=27

WHITMORE

DAVIAN

0 389

Passive vs Active Solutions TBC results vs OPUS projects Primary River Network

194

209

Max Horizontal Delta = 2.4 cm at 144 mile Max Vertical Delta = 5.5 cm at 72 mile RMSE 95 Horizontal = 1.66 cm RMSE 95 Vertical = 4.56 cm n=22

179

136

▲ ↔ ★ ::

May 2021 Overflight included a Longitudinal Profile with water surface and thalweg for 440km of the Colorado River

8 days of data collection under 8000 cfs steady flow conditions utilizes:

- NSRS Control (GNSS constraints for aerial and boat platforms)
- River Control Network (Total Station surveys for ground truthing and 160 photo panels set prior to mission)
- Kinematic GNSS (Multibeam swath orientation and water surface referenced to rim control)
- Airborne Imagery collection from 2 planes. 2 Base stations within 50km of CRE are observed (20cm resolution imagery and orthorectified DTM)
- Multibeam Sonar (Depths and water surface elevations for ~440 km)
- Boat mounted LiDAR system (Identifies cut banks and water's edge location)

Multibeam Sonar Vessel 2 (GNSS post-processed positions) ~25km baseline limit

Applanix Antennae

Onboard IMU

Independent GNSS Antenna

Multi-beam Sonar and LiDAR Scanner

Water Surface Profile – 3 Sources

High Quality Data Available (Applanix and R10 Vertical Error < 10 cm)

201.5 miles of high quality Applanix Data (VE <)</p>

Total station surveys referencing the river network **validate** the NSRS referenced Applanix and R10 solutions by **comparing stages** at the same river mile

- 211.3 miles of high quality R10 data (VE < 10cm)</p>
- 578 total station survey points at 316 unique river hundredthmiles

Passive vs Active TBC results vs OPUS projects 5 2021 Overflight

AIRPORT

DWARE

SHIVWITS

DAVIAN

AZDS

KGMN

2 NSRS stations within 50km of the river Max Horizontal Delta = 3.3 cm at Cardenas Max Vertical Delta = 6.2 cm at SGU1 FERN (100km from Colorado River) RMSE95 Horizontal = 3.0 cm RMSE95 Vertical = 4.2 cm n=21

Passive determined by OPUS projects Active determined by TBC

SCTH

CARDENAS

3.3 cm

RED

Geodetic summary...

Datum Realizations: NAD83(HARN) to NAD83(2011)

Passive NSRS Network progression

- 1992 HARN to 1999 FBN (Via CORS96)
 - (8cm lower)
- 1999 FBN to NSRS 2007
 - (<1cm)
- NSRS2007 to NAD83(2011)
 - (3cm north, 3cm lower)

Future Datum Realizations: NAD83(2011) to NATRF(2023)

Passive to Active (Relative to 9 distant CORS up to 100km away) *GCES, AZPG CORS added in 2015 and after NAD83(2011) adjustment

- NAD83(2011) to NATRF(2023) (2021 overflight data)
 - RMSE 95 Vertical=4.2cm
 - RMSE 95 Horizontal = 3.0 cm
- GCES CORS Station Fixed, 28 free
 - Changes to Passive control (95%): 2.3cm Horizontal, 2.5cm Vertical
- GCES CORS Station Unconstrained, 29 Constrained
 - 1.8cm North, 0.3cm West, 1.0cm up

I I I A I K YOU

Check out our Glen Canyon Map!:

ArcGIS Enterprise - Colorado River Glen Canyon Channel Map (usgs.gov)