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So, why do we have earthquakes in New Madrid?
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New Madrid Paleoseismoloc

NE

New Madrid

Marked Tree  SW

T
1

L

[

-

4040 BC

| il

S G

EXPLANATION
= 1811 liquefaction

| Max. possible age range

| Estimated age

| ]

3340 BC 3490 BC

There is evidence for
earthquake “cycle”
behavior at the few
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Is there an elastic rebound
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Is the New Madrid seismic zone deforming with respect to the plate tectonic
stable N. America plate?
How can one tell?
In N. Amerlca we have an additional con5|derat|on due to GIA
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New Madrid Seismic zone — most active seismic zone east of Rockies
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Space Geodetic Infrastructure in the New Madrid Seismic Zone and surrounding
mid-continent.
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GNSS sites A — stably
monumented antennas (green,
GAMA).

Most antennas mounted on
buildings and other unstable
structures, yellow/gray w/ &
w/out velocity solution.

Seismicity and geologic
structures also shown.
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New Madrid — a small region with a small signal.
SNR<1?
ne limits of GNSS.
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Site velocities with respect to a stable North America Plate Reference frame.
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Elastic response of Earth’s crust to loads.
In addition to isostatic adjustment, the crust responds elastically to applied loads
and GPS can estimate this response to determine the elastic properties of the crust
or “weigh” the load.

Mississippi River Stage, GPS data, model, and residuals
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- New Madrid river stage
negative, rescaled LCHS V residuals

- LCHS V raw data

- LCHS trajectory model

- LCHS data jumps removed
. LCHS TM jumps removed
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Left — response to
Mississippi River floods.
Below — 10 cm peak to
peak vertical response to
Amazon river loading.
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| " High Rate - Kinematic GPS
oNf "1 GPS absolute displacement seismograms and co-located
"N broadband seismic recording of — Love wave of 2004
M9.0, Sumatra-Andaman earthquake in Portageville,
” AR., at 14,000 km distance.
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~100 Absolute displacement, sidereally filtered seismogrames.
Left side, record section where the slope, “move-out”, gives the velocity of the
surface waves.
Right side, same data displayed as surface (not a record section, slope not meaningful).
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We can estimate wave properties such as apparent velocity and azimuth by array
processing (beam steering, fk filtering).

Peak position provides estimate of azimuth and slowness of plane (surface) waves
crossing array.
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High-rate GPS
seismograms from |
Tohoku-Oki, M, 9,

earthquake
recorded in the US
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Seismicity of S. Orkney Islands since installation
of a continuous GPS station in 1999. Large
earthquakes — east — 2003, M7.6, west — 2013,
M7.8: inter-, co-, and post-seismic signals.
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1 Hz GPS seismograms
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Before this event a common question was what were the overshoots?
Static coseismic displacements were N~-0.325 m, E~0.56 m, U~0 m.

Raw seismogram in blue.
Sidereally filtered seismogram in green, sidereal filter in red.




dispalcement meters

rotated seismograms: radial-b; transverse—g; angle 68
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Rotate horizontals for
maximum polarization
into Radially and
Transversely polarized
waves.

H1 vs H2 now radial &
transverse (=Love wave)
directions.

V vs H1 — retrograde
elliptical particle motion
(= Rayleigh wave).

Surface waves pass
DURING development

transverse disp meters Of the coseismic offset,



GPS/GNSS Space Geodesy is continuing to improve in terms of the
hardware (satellites and receivers) and processing.

The slow signals will require more time, and we might not personally live
to see it (think of it like the building of the famous Cathedrals in Europe),
but Space Geodesy will contribute to solving the enigma of the New
Madrid Seismic Zone.

Thank you.



