Fundamental Physics Tests with Space Based Atomic Clocks

Holly Leopardi
Space Dynamics Laboratory
CGSIC Timing Subcommittee
September 20, 2021
Introduction to timekeeping

A clock keeps time by counting the cycles of a periodic oscillator

Counter: Counts the cycles of the oscillator

Oscillator: Provides a stable, periodic signal

Reference: Provides a periodic calibration of the oscillation

Accuracy $\Delta f/f \sim 10^{-8}$

The three main components of a clock are: an oscillator, a reference, and a counter.

Introduction to timekeeping

A clock keeps time by counting the cycles of a periodic oscillator

Counter:
Counts the cycles of the oscillator

Oscillator:
Provides a stable, periodic signal

Reference:
Provides a periodic calibration of the oscillation frequency

Atomic energy levels
\[E_2 \quad \Delta E = h\nu \quad E_1 \]

Accuracy
\[\Delta f/f \sim 10^{-16}-10^{-18} \]

The three main components of a clock are: an oscillator, a reference, and a counter.

Definition of the SI second:
“The duration of 9 192 631 770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the cesium 133 atom”

Counter:
Counts the cycles of the oscillator

Oscillator:
Provides a stable, periodic signal

Atomic energy levels

$\Delta E = hv$

Reference:
Provides a periodic calibration of the oscillation frequency

Evaluating Atomic Clocks

Best clocks are both stable and accurate!
Optical Atomic Clocks

Optical frequencies oscillate 10^5 times faster than microwave frequencies.
Second can be divided into finer segments.

18 digits of resolution
0.000 000 000 000 000 001

Clock accuracy, $\Delta f/f$

- 10^{-13}
- 10^{-14}
- 10^{-15}
- 10^{-16}
- 10^{-17}
- 10^{-18}

Year

JILA Sr lattice clock

Microwave cesium
optical (neutral)
optical (ion)
Atomic Clocks as Sensors

Atomic clocks can be used as sensors to probe fundamental physics.

Atomic clock frequencies very well known (10^{-16}-10^{-18})
- Sensitive to very small changes in transition frequency/energy levels
- Atomic transitions based on fundamental constants

Atomic clock measurements could give insight to:
- Unification Theory
- Dark Matter Detection
- Variations of Fundamental Constants
- Physics beyond the standard model
Space provides a unique environment:

- Microgravity
- Long baselines
- Large aperture networks
- Not limited by seismic noise
- Low-noise environment Reduced atmospheric interference on optical signals – optical links
1. Weak Equivalence Principle –
 • Objects fall at the same rate regardless of composition.

2. Local Lorentz Invariance –
 • Outcome of any non-gravitational experiment is independent of the velocity and orientation (freely falling) apparatus.

3. Local Position Invariance –
 • Outcome of any non-gravitational experiment is independent of where and when in universe it was performed.
 • Fundamental constants do not vary in time.

Einstein Equivalence Principle

Comparing atomic clocks can test Einstein Equivalence Principle!

We can compare:
• Different atomic species
• Clocks on ground and in orbit
• Clocks at different points in orbit
• Clocks over extended periods of time
Testing Universal Gravitational Redshift

Gravitational redshift measurements test Local Position Invariance

\[Z = (1 + \beta) \frac{\Delta U}{c^2} \]

Clock frequency shift due to change in gravitational potential \(\Delta U \)

If LPI holds, \(\beta = 0 \)

- Clocks run slower closer to massive objects
 - Gravitational redshift
- Compare identical clocks at different gravitational potentials
- Precision measurement of the Earth and Sun gravitational potentials
- Constrain \(\beta \) at \(10^{-6} \) level by comparing \(10^{-16} \) clocks

Ground-to-Space Clock Comparisons

- Compare ratios of different atomic species in orbit.
 - Weak Equivalence Principle (WEP) tests
- Compare different atomic clocks
 - Does the ratio of atomic clocks change in orbit?
- Variations of fundamental constants – Local Lorentz Invariance test
 - Is the speed of light constant and isotropic?

Constrain variations in fundamental constants and the WEP via clock comparisons

Schiller., et al., Nuclear Physics B-Proceedings Supplements 166 (2007)
Relativistic Geodesy

Use atomic clocks to improve local geodesic measurements

Measure differential redshift between clocks on ground and in orbit – measure Earth's geopotential

Map Earth's geopotential at the cm-level with 10^{-18} clocks

- Study variations in Earth's geopotential
- Map water/ice flows
- Establish unified height datum

Gravitational Wave Detection

GW induces doppler shift between identical atomic clocks.

- Compare atomic clocks on independent satellites with a shared clock laser
- GW changes apparent distance between clocks
- Causes doppler shift between clocks
 - Clock B no longer on frequency
- Space based GW detector not limited by seismic noise
- Sensitive to Broad frequency of GW
 - mHz – 10’s Hz
- Investigate new sources of GW waves
 - Inspiraling black hole mergers

Dark Matter Detection

Clock networks can be used to detect and constrain models of dark matter.

- GPS network provides distributed aperture for sensing DM
- Rb and Cs clocks have different coupling strengths
 - Independent networks
- Ultralight topological Dark Matter couple to fundamental constants
- Transient change in atomic transition frequency as domain wall passes through
- Velocity of DM signatures \sim 300 km/s

Optical Time Dissemination

- On orbit atomic clock to compare against remote clocks on the ground
- Optical and microwave links to compare and disseminate timing data
- Improved atomic timescale

Requires:
- Improved time transfer links

Optical second would improve realization of SI second by 2 orders of magnitude.

Performance of clocks and links

Optical time transfer links can support optical clock performance.

Leopardi et al, Metrologia (2021)
Two clocks emit a pulse at the same local time. Measure the time of arrival at the other site. Apply timing correction to synchronize clocks.

Two-way time transfer

\[T(A) = T_{B \to A} + \Delta T_{AB} \]

\[T(B) = T_{A \to B} - \Delta T_{AB} \]

\[\Delta T_{AB} = \frac{1}{2} (T(A) - T(B)) + \frac{1}{2} (T_{A \to B} - T_{B \to A}) \]

Clocks are synchronized when the pulses arrive at each site at the same time!
Coherent time transfer with combs

Frequency combs can transfer time by comparing and synchronizing pulse trains

J.D. Deschenes et al, Phys Rev X (2016).
Conclusion

• State of the Art optical Atomic clocks perform at 10^{-18} level
 • Precise sensors

• Comparing atomic clocks enables tests of fundamental physics
 • Einstein’s Equivalence Principle
 • Dark Matter searches
 • Gravitational waves
 • Relativistic geodesy
 • Redefinition of SI second

• Free space optical time transfer links based on frequency combs

Image Credit: NPL

Thank you!
References

Leopardi et. al., Metrologia (2021)
F. Riehle, et. al., Metrologia 55.2 188 (2018).
Schiller, et. al., Nuclear Physics B-Proceedings Supplements 166 (2007)