Current and Future Atomic Clocks – Roadmap and Applications

David R. Scherer, Bonnie L. Schmittberger, Jonathan Hirschauer

Civil GPS Service Interface Committee (CGSIC) – Timing Subcommittee
Co-located with ION GNSS+
September 16, 2019
Outline – Current and Future Atomic Clocks

- Overview of different technologies: microwave vs. optical clocks
- Summary and comparison of current products
- Future clocks
- Applications
Microwave vs. Optical Clocks

Microwave Clocks
- **Origin of Energy Levels**: Hyperfine Structure, coupling between nuclear spin and total angular momentum of valence electron
- **Excitation Source**: Microwave magnetic field
- **LO**: Quartz oscillator (10 MHz), frequency multiplier up to 10 GHz
- **Market Penetration**: Basis for all commercial atomic clocks on market today, and many future clocks

Optical Clocks
- **Origin of Energy Levels**: Electric dipole transition, change in orbital angular momentum of valence electron
- **Excitation Source**: Laser electric field
- **LO**: Laser
- **Market Penetration**: No commercial products as of 2019, basis for much of clock R&D activity

© 2019 The MITRE Corporation. All rights reserved.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 19-2583
Architecture: Microwave Clocks

Microwave Clock Architecture
- LO: Quartz oscillator (OCXO)
- LO practical limit: $\sigma_y(\tau) \approx 1 \cdot 10^{-13}$ at 1 second
- Microwave synthesizer: RF \rightarrow Microwave conversion
- User output: LO output at RF

Clock Stability
- Allan Deviation (ADEV): $\sigma_y(\tau = 1 \text{ s}) = \frac{1}{Q \cdot (SNR)_{1 \text{ Hz}}}$
- $Q = \frac{f_0}{\Delta f}$ = line quality factor
- SNR = Signal-to-Noise Ratio

Current Products include:
- CSAC
- Rb clocks
- Cesium Beam Tube
- H maser

Physics Package
- Microwaves
- Microwave Synthesizer
- Control Loop
- Tuning voltage
- User Output (RF)
- LO
- OCXO

© 2019 The MITRE Corporation. All rights reserved.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 19-2583
Architecture: Optical Clocks

Optical Clock Architecture
- LO: Laser
- Optical frequency downconverter (comb): link between optical and RF domain
- User output: LO output (laser) or downconverted to microwave/RF domain

Optical Clocks Compared to Microwave Clocks
- Q is 10,000 times larger
- Short-term stability is 1,000 times better
- Uncertainty is 100 times better
- Environmental susceptibility is smaller
Current Atomic Clock Products - Comparison

Stability (Allan Deviation) vs. averaging time

Comparison charts

ADEV(1 s)
ADEV(100 s)
L(10 Hz)
Drift
Retrace
Accuracy
Tempco
TDEV(1 hr)
TDEV(1 day)

vs.

Size
Weight
Power
SWaP

© 2019 The MITRE Corporation. All rights reserved.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 19-2583
ADEV Comparison of Current Atomic Clocks

\[\sigma_y(1) = 6.85 \times 10^{-10} + (\text{size in cm}^3)^{-0.64} \]

Includes microwave clocks only

Legend

CSAC = Microsemi SA.45s CSAC
TCSAC = Teledyne CSAC (preliminary)
CPT = Chengdu Spaceon CPT
NAC = Accubeat Rb NAC1
IQRB1 = IQD IQRB-1
Ch Rb = Chengdu Spaceon XHFT1031
MAC = Microsemi SA.35m
SA22 = Microsemi SA.22c
PRS = SRS PRS10
LP = Spectratime low profile Rb
AR133A = Accubeat AR133A Rb
miniRAFS = Spectratime miniRAFS
IQRB2 = IQD IQRB-2
5669 = FEI FE-5660 Rb
FS725 = SRS FS725
RAFS = Excelitas space RAFS
iRAFS = Spectratime iSpace RAFS
CsIII = Microsemi CBT 4310B CsIII
FEI RAFS = FEI RAFS
5071A = Microsemi 5071A CBT
OPC = Chengdu Spaceon TA1000 OPC
c-Rb = Spectradynamics cold Rb c-Rb
PHM = T4Science pHMaser 1008
mu = Muquans cold-atom MuClock (preliminary)
MHM = Microsemi MHM 2010 H Maser
Vremya = Vremya VCH-1003M H Maser
T4 = T4Science iMaser-3000 H Maser

© 2019 The MITRE Corporation. All rights reserved.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 19-2583
TDEV, Drift Comparison of Current Atomic Clocks

Includes microwave clocks only

© 2019 The MITRE Corporation. All rights reserved.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 19-2583
Future Clocks: Reduced Environmental Sensitivity

Physics Package – current clocks

Gas cell clocks: Hot Rb/Cs atoms in glass cell

Cesium Beam Tube: Hot Cs atoms emerging from oven

Physics Package – future clocks (trapped, cold atoms)

- A single trapped, cold atom in vacuum
- Ensemble of trapped, cold atoms in vacuum

Reduced coupling to environment can come from:
- Atom trapping (laser cooling)
- Optical transitions

Cold-Atom Microwave Clocks – Emerging Products

Muquans (France) - LNE-SYRTE, HORACE, Rubiclock
- Isotropic laser cooling of Rb in spherical cavity
- Stability $= 3 \times 10^{-13}/\sqrt{\tau}$, Floor $= 2 \times 10^{-15}$

Spectradynamics (Colorado) - NIST
- Laser cooling of Rb
- Stability $= 8 \times 10^{-13}/\sqrt{\tau}$, Floor $= 1 \times 10^{-15}$

© 2019 The MITRE Corporation. All rights reserved.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 19-2583
Future Optical Clocks – Promising Prototype

O-RAFS (AFRL) – Optical Rubidium Atomic Frequency Standard
- Doppler-free two-photon transition in Rb
- Stability (demonstrated) = $3 \times 10^{-13}/\sqrt{\tau}$,
- Floor at 1 day (target) = 1×10^{-15}

Benefits of using an optical transition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>O-RAFS (optical)</th>
<th>RAFS (microwave)</th>
<th>O-RAFS Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock frequency</td>
<td>778 nm (385 THz)</td>
<td>6.8 GHz</td>
<td>56,000</td>
</tr>
<tr>
<td>Pressure shift (Helium)</td>
<td>5.5×10^{-9}/Torr</td>
<td>3.1×10^{-4}/Torr</td>
<td>56,000</td>
</tr>
<tr>
<td>Second-order Zeeman shift</td>
<td>$6.5 \times 10^{-11}/G^2$</td>
<td>$8.4 \times 10^{-8}/G^2$</td>
<td>1,300</td>
</tr>
</tbody>
</table>

G. Phelps et al., “Compact Optical Atomic Clock with 5×10^{-13} Instability at 1 s”, NAVIGATION, 65 (2018)

Comparison – Current vs. Future Atomic Clocks

Microwave systems
- CSAC
- Cold atom clock
- Ion physics package
- Ion clock

Optical systems
- Thermal atom physics package
- Ion physics package
- Optical lattice physics package
- Optical lattice clock
Clock accuracy improvements (1975 – present)

Important themes:

- Future improvements to clocks will result from reduced coupling to environment
 - Cold atoms, trapped ions, optical transitions

- Microwave and optical clocks are on a different trajectory in terms of improvement over time

- Optical clocks may have a different scaling in terms of ADEV vs. SWaP

Adapted from M. S. Safronova et al., “Search for new physics with atoms and molecules” Rev. Mod. Phys. 90, 025008 (2018)
Applications of Clocks

Three Main Application Areas:

Low-SWaP clocks for low-power applications
• Clocks = CSAC
• Applications = TTFF, GNSS augmentation, undersea exploration

Fieldable clocks for tactical applications
• Clocks = Rb clocks
• Applications = telecom, finance, military, communications

Reference clocks for strategic applications
• Clocks = Cs Beam Tube, Maser, cold atom, two-photon Rb, trapped ion, optical clocks
• Applications = Synthetic aperture radar, fundamental physics, GNSS, metrology
MITRE is a not-for-profit organization whose sole focus is to operate federally funded research and development centers, or FFRDCs. Independent and objective, we take on some of our nation's—and the world's—most critical challenges and provide innovative, practical solutions.

Learn and share more about MITRE, FFRDCs, and our unique value at www.mitre.org