Controlling Clocks

Demetrios Matsakis

Masterclock, Inc.

A ten-minute tour

If this interests you ...

Matsakis, Metrologia <u>56</u> (1), March 8, 2019 Free download:

https://iopscience.iop.org/article/10.1088/1681-7575/ab0614

"TMI version"

- Matsakis, ION-PTTI 2019
- Free download

https://tycho.usno.navy.mil/papers/ts-2019/ControlledClocks.IONPTTI.Matsakis2019.pdf

Goal

Control a clock to be

- 1. On Time
- 2. On Frequency

With respect to

- Master Clock, such as UTC(k)
- or GPS
- or other GNSS

The Means to the Goal: Steering

Steer = frequency adjustment

The Gain is the Game

• Gain Vector = $G = (g_x \quad g_y)$

• Steer = -
$$(g_x \quad g_y) \begin{pmatrix} phase \\ frequency \end{pmatrix}$$

(phase = time for purpose of this talk)

Nothing is Perfect

- A steered clock will never exactly mimic the Master
- You can optimize some aspects of its performance
 - Only at the expense of other aspects
- Some performance elements:
 - Steady-state RMS deviation in time
 - Steady-state RMS deviation in frequency
 - Short-term instability due to excessive steering
 - Response to non-stochastic disturbances

One way: LQG = Linear Quadratic Gaussian

Optimal Gains for your priorities

Compromise between

- frequency offset RMS
- phase offset RMS
- steers RMS

Equivalently

- (frequency RMS)/(steers RMS)
- (phase RMS)/(steers RMS)

LQG in two plots

Alternate approach: setting Time Constants

- How quickly does it recover from:
 - Noise fluctuations
 - Systematic variations
 - Non-Gaussian behavior (jumps, etc.)
- Typically two time constants are at work
 - Short-term exponential
 - Long-term exponential
- Can also have [decaying] oscillations

Critical Gains

Result in only one time constant and no oscillations

- T=Time Constant
- $g_x = (1 e^{-1/T})^2$
- $g_y = 1 e^{-2/T}$

Gains and Time Constants

In the "real world"

- Systems need to be super-robust
 - Especially if not monitored or redundant
- Crystal or Rubidium oscillators
 - Example: a controlled clock *at time t*
 - Phase offset =X
 - Frequency offset = 0
 - So steer is $-g_x * X$
 - If controlled clock's raw frequency shifts by $+g_x^X$
 - The clock oscillator's frequency drift negates the steering
 - If it happens as random fluctuation, no problem
 - What about a crystal with systematic freq. drift= $+g_x *X?$

PID Controllers

- Use three gains
 - P = Phase gain
 - D =Derivative gain (Frequency gain)
 - I = Integral gain = sum of past Phase deviations
- The Integral gain ("I")
 - can handle systematic freq. drift in underlying clock
 - as in the previous slide
 - can lead to faster convergence
 - BUT the extra gain parameter requires care
 - can lead to instabilities, excessive overshooting

Many ad-hoc PID optimization methods exist

• The Wikipedia lists 6 classes of approaches

- A seventh is analogous to the critical gains:
 - $g_P = 1 3e^{-2/T} + 2e^{-3/T}$
 - $g_I = 1 3e^{-1/T} + 3e^{-2/T} e^{-3/T}$
 - $g_D = 1 e^{-3/T}$
 - T=Time Constant, in units of measurement interval
- My time is up
 - But the work has just begun!

backups

www.PSDgraphics.com

Separation Principle

The optimal gain is independent of the state estimate (i.e. how good your clocks are)

- The calculations for optimality do not use any state estimation parameters
- But you MUST make an optimal state estimate
 - given your data and clock stability

Stabilities associated with critical gains

Suboptimal State Estimation

Effect of 10-day delay in Circular T

Measurement Noise = 1 ns Freq Stab = 3 10⁻¹⁴ @ 1 month

Minimum RMS as a function of gains

- Contour details depend on assumed noises
- LQG finds optimum gains for any linear sum of their variances
 - independently of the noises

Three cost functions

Phase Cost=10⁻⁴ Freq Cost=10⁻³ Steer Cost=1

Phase Cost=1000 Freq Cost=100 Steer Cost=1 Phase Cost=100 Freq Cost=1000 Steer Cost=1

Z-Transforms and Poles

$$p_k = (2 - \tau g_1 - g_2)p_{k-1} - (1 - g_2)p_{k-2} + n_k$$

 p_k =state, n_k =noise, τ = spacing

- Desire: exponential behavior for $p_k = p_0 e^{-\tau k/T}$
- Take Z-transform of both sides
- Leads to equations for gains g_1 and g_2
 - Oscillatory solutions have imaginary T's
 - Others have two real decay times T
 - A very few critical gains have one decay time