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A network of GNSS/GPS statioh‘\s?v'
measures plate tectonic motion®* =
and land surface deformation, . .- .- ..
horizontal and vertical, to an ™ &' :I L - g
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1 mm/yr

We can see whether the motion L ign |
is ‘slow and steady,’ or perhaps-—"
more interestingly, is it
sometimes accelerating or
decelerating







Continuous and campaign GPS arrays

Continuously Operating GPS Stations Campaign Survey GPS Points
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Using GNSS/GPS to measure fault motion

Track monuments located
near active faults

Estimate motion relative to Initial
each monumented station. Survey

Stations are occupied
simultaneously.

One Year

Relative POS itions and San Andreas Fa ult Later
possible motion are O

determined between

stations to a precision near

the millimeter level.

Determine the 3D change in relative position between stations.
Calculate accumulated strain and slip between faults.
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GPS Time Series

The Global Positioning System (GPS) is a constellation of 30 satellites which is used for navigation and precise
geodetic position measurements. Data from over 2000 receivers have been analyzed at the Jet Propulsion
Laboratory, California Institute of Technology under contract with the National Aeronautics and Space
Administration. JPL's GipsyX software is used to produce these time series and other useful data products.
Horizontal velocities, mostly due to motion of the Earth's tectonic plates, are represented on the map by lines
extending from each site. Click on a dot or name to see detailed time series for a particular site. Additional
information may be obtained from Michael Heflin@jpl.caltech.edu.

Geodetic Positions and Velocities || Cartesian Positions and Velocities
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Longitude (cm)

Example of GPS Time Series
produced at JPL/NASA

Time series for MIA3.
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Rate —1.402 +- 1.348 mm/yr

Time (years) Repeatability 5.7 mm
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Measurements with GNSS/GPS reveals
motion between and during earthquakes
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Time series for IGS station PYGR

South Island, New Zealand
M7.8 Dusky Sound Earthquake, Wednesday, July 15, 2009

PYIGR 50240M001 Soln: NZIGS [Date: 16-Mar-2[l16|
1 1 1 1 1 1 1 1

1 1




Post-seismic relaxation - 2009 Dusky Sound earthquake

G STRESS BUILD-UP

THE INSTANT OF RUPTURE REBOUNDING TOA NEW EQUILIBRIUM




GNSS monitoring velocity change

Station PYGR, South Island, New Zealand

PYGR 50240M001 Soln: NIIGIS Date: 28-Apr-2016 46.166 166.681 253m
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4

A0

35

J.

Horizontal
Displacements

Difference between
estimated positions
of GEONET stations
at 05:00 and 06:30
UTC, March 11, 2011

GPS 1 Hz data in
RINEX format
provided by the
Geospatial
Information Authority
(GSI) of Japan.
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Using multi-GNSS measurements for monitoring volvanoes
Data telemetered for near-real time measurements

Motions of
volcanoes’
flanks can
indicate the
arrival of

new magma;
GPS is used

to monitor .
changes in L -l
activity.
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GNSS
NEESNGIERIES
provide
models of the
direction and
rate (length of
arrow) of
deformation at
the summit of
Mauna Loa.

Arrows
pointing in
multiple
directions
away from the
summit
indicate
inflation.

GPS measurements provide models of the direction and rate (length of arrow) of deformation at the
summit of Mauna Loa. Arrows pointing in multiple directions away from the summit indicate inflation. x
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Real-time Global Positioning System at Kilauea's summit

https://volcanoes.usgs.gov/volcanoes/kilauea/monitoring _deformation.html




Real-time GPS measurement results at

Kilauea’s summit
Period: September 17 through 22, 2018

BYRL vertical component

South Caldera (CALS) vertical component Uwekahuna (UWEV) north component




GPS positioning results
— Kilauea Summit
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GPS positioning results
— Pu’u ‘O‘0 Cone
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GPS/GNSS tracking for hazards management

« GPS/GNSS is an essential enabling technology for the
mapping and precise monitoring needed to accomplish
science missions in support of hazard warnings.

* In the aftermath of a significant disaster event,
GPS/GNSS is critical in support of updating maps and
geopositioning incident features - essential in support
of immediate response (e.g., support Urban Search &
Rescue) as well as for long-term recovery (e.g.,

orgamzmg debris removal).







