RAIM and ADS-B

RAIM & ADS-B PREDICTION FOR PBN OPERATIONS

JOHN WILDE, GLOBAL STRATEGIC SALES

12.09.2016

O3 Future Developments

O2 RAIM+

01 What is GPS?

What is GPS?

CHAPTER 01

4

Basic GNSS Principles

- NAVSTAR = Navigation System using Timing and Ranging
- GPS = Global Positioning System
- Initiated by Department of Defence
- Project was started in 1973
- First satellites launched in the late 1970's
- Declared fully operational in 1995
- System has been improving ever since

Basic GNSS Principles

• 3 Component Segments of GPS

Space

Control

User

GPS Space Segment

- Constellation of 32 satellites move in six orbital planes approximately 20,200 km above Earth
- Base constellation of 24 satellites in designated primary slots
- Increased to 27 operational satellites (June 2011) to improve availability, "The Expandable-24"
- GPS constellation has 31 operational satellites
- Zero Block IIA
- 12 Block IIR
- 7 Block IIR-M
- 12 Block IIF
- 3-5 residual satellites in a stand-by mode

GPS Space Segment

- 1 additional satellite set unhealthy (SVN49/PRN27 used for tests)
- "Residual" satellites are kept in a stand-by mode and can be set "healthy" if needed to replace a failed satellite
- The expanded constellation uses the additional satellites (24+3) to increase worldwide availability
- There are three expanded slots (one in the B, D and F planes)
- A "non-primary" satellite is typically located to back-up an older satellite and is not located in a primary or expanded slot

8

GPS Control Segment

- Ground Control Segment is comprised of monitor stations and ground antennas with uplink capabilities. Monitor stations track all satellites in view
- Information from monitor stations is processed at Master Control Station (MCS) to determine satellite clock and orbit states and to update navigation message of each satellite. This updated information is transmitted to satellites via ground antennas

NAVBLUE

9

GPS User Segment

- Each satellite transmits its position and a time signal
- Signals travel to receiver delayed by distance travelled
- Differences in distance travelled make each satellite appear to have a different time
- Receiver calculates distance to each satellite and can then calculate its own position

GPS One-Way Ranging

- GPS satellites broadcast radio signals providing their locations, status, and precise time from onboard atomic clocks.
- The GPS radio signals travel through space at the speed of light, more than 299,792 km/second.
- A GPS device receives the radio signals, noting their exact time of arrival and uses these to calculate its distance from each satellite in view.
- Once a GPS device knows its distance from at least four satellites, it can use geometry to determine its location on Earth in three dimensions.

Satellite Position: Almanac and Ephemeris

- GPS Navigation Message
 - Time
 - Almanac data
 - Ephemeris data
- Almanac data
 - Coarse orbital position of whole constellation
 - Valid for a long time
- Ephemeris data
 - · Coarse orbital position for whole constellation
 - Valid for a few hours
 - Updated regularly

GNSS Principles: Error Sources

Error Source	GPS Error (m)	*
Almanac / Ephemeris	1 to 3	
Ionosphere	1 to 7	
Troposphere	0.1 to 0.5	
Multi-path	0.5 to 1.5	
Satellite Clock vs Receiver Clock	1 to 2	
Receiver Noise	0.2 to 0.3	

Bad Geometry

GNSS Principles: Navigation System Performance: Geometry

Navigation System Performance - RNP

- Traditionally "box-based"
 - Mandatory Equipment
 - Performance not specified explicitly
- Move towards Required Navigation Performance or Performance-Based Navigation
 - Operator can meet requirements in 'anyway he pleases'
 - e.g. with GPS
- Goal: Target Level of Safety
- Risk of leaving containment area distributed amongst:
 - Accuracy
 - Integrity
 - Continuity
 - Availability

RAIM+

CHAPTER 02

Introduction to RAIM+

OVERVIEW

- RAIM+ supports all RNAV and RNP operations supported by ICAO PBN
- Supports all PBN Navigation Specifications and regional / state AMCs and ACs
- From RNAV 10 to RNP AR down to 0.1 NM
- Since DWI (now NAVBLUE) started to supply the RAIM+ to commercial customers (Scheduled 2007, On-Demand 2008, Web UI 2012) there has been zero downtime of the service
- Updated for
 - New Navigation Specifications
 - New Constellations (Galileo, Compass etc)

THREE MAIN DELIVERY CHANNELS

- RAIM+ Web User Interface
- RAIM+ On-Demand
- RAIM+ Scheduled

RAIM+ Delivery Channels

- Interfaces with USCG/USAF official distributors of GPS Almanacs and NANUs
- NAVBLUE aeronautical data
- Same core engine for all services

Standards Compliance

- Meets ICAO PBN guidance, FAA ACs and EASA AMCs
- Local variations on the above

	USA	Europe	Australia	South America
	FAA	EASA	CASA	SVRSOP
RNAV	•			
RNAV 10 (aka RNP 10)	Order 8400.12	AMC 20-12	AC 91U-2(0)	AC 91-001
RNAV 5 (aka B-RNAV)	AC 90-96	AMC 20-4 (JAA TGL 2)	CAAP B-RNAV-1	AC 91-002
RNAV 2 (aka US RNAV Type A)	AC 90-100	JAA TGL 10 (AMC 20-16)	AC 91U-II-3-B	AC 91-003
RNAV 1 (aka US RNAV Type B; P-RNAV)	AC 90-100	JAA TGL 10 (AMC 20-16)	AC 91U-II-3-B	AC 91-003
RNP				
RNP 4	Order 8400.33		AC 91U-3(0)	AC 91-004
RNP 1	AC 90-105	JAA TGL 10 AMC 20-16)	AC 91U-II-C-3(0)	AC 91-006
RNP Approach	AC 90-105() (LNAV, LNAV/VNAV) AC 90-107() (LP, LPV)	AMC 20-27 (LNAV, LNAV/VNAV) AMC 20-28 (LP, LPV)	AC 91U- AC 91U-II-Attachment (LNAV/VNAV) II-C-5 (LNAV)	AC 91-008 (LNAV) AC 91-010 (LNAV/VNAV)
RNP AR (Authorisation Required) Approach	AC 90-101	AMC 20-26	AC 91U-II-C-5 (RNP AR) AC 91U-II-C-6	AC 91-009

RAIM+ Web User Interface

- Self-service Web Portal
- Suite of tools to assist
- 3 hour training course
- Admin tools

GNSS RA	IM/RNP Predict	tion System				
The GNSS R prediction re	AIM/RNP Prediction quirements as outlin	System (GRPS) has bee ed in ICAO's Performanc	en developed to meet i e-Based Navigation (i	the RAIM/RNP PBN) Manual	Route	Edit GPS Receiver
(Doc 9613, E RNP Approa	dition 3 - 2008) inclu ch and RNP AR App	uding RNP 10, RNAV 5, I proach down to 0.1NM.	RNAV2, RNAV1, RNP	4, Basic RNP-1,	Section 1 EEKE CC16 PPIZ	Receiver Type: C145 C146 Algorithm: C129 C145 C146 C145
In addition th international	e GRPS core systen standards and advis	n meets the requirements sory circulars including:	for RAIM prediction a	as outlined in	Aerodromes	SA: OFF : Baro Aided: OFF :
 Europe: AMC20- USA: FA 	EASA AMC 20-4, EA 28, EASA AMC20-24 A AC90-100A, FAA	ASA AMC20-12, EASA A 8 as well as JAA TGL 10. AC 90-101, FAA Order 8	MC20-16, EASA AMC 400.33 and FAA Order	20-26, EASA r 8400.12A.		UK Lainei
For more info	ormation on the stand	dards click here.				
GRPS has be Navigation S	een designated for p atellite System), CO	predictions relating to NA MPASS and INRSS (Indi	VSTAR GPS system. H an Regional Navigatio	However, it will be onal Satellite Sys	e expanded in the future tem).	to include Galileo, GLONASS (Global Orb
GRPS provid	es access to four too	ols:				

RAIM+ Scheduled

- Daily subscription service
- Emailed / AFTN or preferred delivery
- Aerodrome outages prioritised in message

AN AIRBUS COMPANY

Subject RAIM PREDICTION B772/B773 Cathay - New York Date 2014-05-19 02:02:18 UTC Message RAIM PREDICTION B772/B773 Cathay - New York RUN AT 02:01Z 19/May/2014 VALID FROM 02:00Z 19/May/2014 FOR A 48 HOUR VALIDITY

B772/B773 KEWR RNP:0.3 RAIM Check COVERAGE UNACCEPTABLE FOR OPERATION DURING GIVEN PERIOD FROM (Z) TO (Z) 19/05/2014 17:39:30 - 19/05/2014 17:44:30

B772/B773 KEWR RNP:1.0 RAIM Check GPS COVERAGE ACCEPTABLE FOR THIS OPERATION OVER THE NEXT 48 HOURS

B772/B773 KJFK RNP:0.3 RAIM Check GPS COVERAGE ACCEPTABLE FOR THIS OPERATION OVER THE NEXT 48 HOURS

B772/B773 KJFK RNP:1.0 RAIM Check GPS COVERAGE ACCEPTABLE FOR THIS OPERATION OVER THE NEXT 48 HOURS

RAIM+ Scheduled

- GNSS RAIM Outages for Aerodromes
- NOTAM Proposals generated for State NOTAM Office

- Proposals issued in NOTAM format so no additional formatting required by NOTAM Office

A1234/09 NOTAMN
Q) LFBB/ QGAAU/ I/ NBO/ A/ 000/ 999/ 4100N00200E005
A) LFBO
B) 0908240145
C) 0908250225
D) 24 0145-0230 0630-0645 25 0155-0225
E) EGNOS NOT AVAILABLE FOR LPV
This NOTAM is a new NOTAM (NOTAMN). Its reference is A1234/09

NOTAM N example

RAIM+ On-Demand

- Integrated with flight / trip planning systems
- Calculates RAIM predictions automatically as part of routine flight planning

Future Developments

CHAPTER 03

ADS-B Availabilty

ADS-B IN THE USA

- ADS-B Availability Predictions required for operations in USA from 2020
- If a similar mandate implemented in other ICAO regions this functionality will be available for SATDIS
- IPACG/38, para 2.1.2.11 "Operators may choose to use an alternative FAA-approved prediction tool"

U.S. Department of Transportation Federal Aviation Administration

"DRAFT"

Advisory Circular

Subject: Automatic Dependent Date: DRAFT AC No: 90-114A Surveillance-Broadcast Operations Initiated by: AFS-400 Change: 1

1. PURPOSE. The intent of this advisory circular (AC) is to facilitate operations using Automatic Dependent Surveillance-Broadcast (ADS-B) technology in compliance with Title 14 of the Code of Federal Regulations (14 CFR) part 91, §§ 91.225 and 91.227, which are required after January 1, 2020. The appendices provide guidance for the authorization of additional ADS-B Out and ADS-B In operations and their associated aircraft qualification and maintenance requirements.

2. PRINCIPAL CHANGES. This change incorporates new ADB-S guidance related to a technical amendment to § 91.225; equipping type certificated (TC) aircraft, light-sport aircraft (LSA), and experimental aircraft; and preflight requirements in U.S.-designated airspace. This change also modifies guidance for Cockpit Display of Traffic Information (CDTI) Assisted Visual Separation (CAVS).

ADS-B Service Availability Prediction

OVERVIEW

- Main message: very similar to RAIM prediction
- RAIM case: predict Horizontal Protection Limit **HPL**) (as observed by airborne equipment)
- ADS-B case: predict the observed position's Navigation Accuracy Category (NACp) and – Integrity category (NIC)
- Simple mapping exists: NIC is based on HPL, NACp on HFOM (introduced next)

SIMILARITIES

- In both cases: availability can be predicted based on predictable performance parameters
- RAIM availability based on horizontal alert limit (HAL) allowed in an operational environment:
 • HPL ≤ HAL system is available
- ADS-B availability is similarly based on minimum NIC and NACp values, e.g.:
 - NIC \geq 7 and NACp \geq 8 system is available

$\textbf{NIC} \approx \textbf{HPL}$

MAPPING ONE TO ANOTHER

- NIC \approx HPL: NIC represents a range of HPLs \rightarrow
- Predicted HPL can be translated into NIC using a simple look-up table. Example:
 - HPL of 300 m falls in interval [185.2m,380.4m], hence NIC = 7

NIC	Containment Radius	Associated HPL range
0	Unknown	HPL unknown
1	RC < 37.04 km (20nm)	14816 m ≤ HPL < 37040 m
2	RC < 14.816 km (8nm)	7408 m ≤ HPL < 14816 m
7	RC < 370.4 m (0.2nm)	185.2 m ≤ HPL < 370.4 m
8	RC < 185.2 m (0.1nm)	75 m ≤ HPL < 185.2 m
	•••	

Horizontal Figure of Merit (HFOM)

- HFOM: horizontal 95% containment value for position error
- Not used in RAIM prediction:
 RAIM availability is driven by integrity, not accuracy
- Based on same computations as HPL using:
 Predicted satellite geometry
 - Range error model, either:
 - SA-on model (TSO-C129)SA-off model (TSO-C145/146/196)

- Adding HFOM to the RAIM prediction environment requires no significant architectural changes
 - HFOM can be derived from already computed results in few lines of code

NACp ≈ HFOM

MAPPING ONE TO ANOTHER

- NACp \approx HFOM: NACp represents a range of HFOMs \rightarrow
- Predicted HFOM can be translated into NACp using a simple look-up table

NACp	Associated HFOM range	Comment	
0	18520 m < HFOM	Unknown accuracy	
1	7408 m ≤ HFOM < 18520 m	RNP-10 accuracy	
6	185.2 m ≤ HFOM < 555.6 m	RNP-0.3 accuracy	
7	92.6 m ≤ HFOM < 185.2 m	RNP-0.1 accuracy	

NAVBLUE ADS-B Solution

- Solution to be made available to the market by 2017
- Currently participating in FAA/Volpe testing
- Similar delivery channels to RAIM Prediction:
 Web UI
 On-Demand
- Scheduled not applicable for route predictions
- DWI actively participating in forums relating to ADS-B

NAVBLUE and Worldwide RAIM Requirements

Contact

JOHN WILDE JOHN.WILDE@NAVBLUE.AERO +44 (0) 118 324 0172

AN AIRBUS COMPANY

© ARBUS S.A.S. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT. THIS DOCUMENT AND ALL INFORMATION CONTAINED HEREIN IS THE SOLE PROPERTY OF AIRBUS. NO INTELLECTUAL PROPERTY RIGHTS ARE GRANTED BY THE DELIVERY OF THIS DOCUMENT OR THE DISCLOSURE OF ITS CONTENT. THIS DOCUMENT SHALL NOT BE REPRODUCED OR DISCLOSED TO A THIRD PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF AIRBUS. S.A.S. THIS DOCUMENT SHALL NOT BE REPRODUCED OR DISCLOSED TO A THIRD PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF AIRBUS. S.A.S. THIS DOCUMENT SHALL NOT BE REPRODUCED OR DISCLOSED TO A THIRD PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF AIRBUS. S.A.S. THIS DOCUMENT SHALL NOT BE REPRODUCED OR DISCLOSED TO A THIRD PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF AIRBUS. S.A.S. THIS DOCUMENT SHALL NOT BE REPRODUCED OR DISCLOSED TO A THEY ARE BASED ON THE MENTIONED ASSUMPTIONS AND ARE EXPRESSED IN GOOD FAITH. WHERE THE SUPPORTING GROUNDS FOR THESE STATEMENTS ARE NOT SHOWN, AIRBUS S.A.S. WILL BE PLEASED TO EXPLAIN THE BASIS THEREOF. AIRBUS, ITS LOGO, A300, A301, A331, A330, A340, A330, A330,