Space and Missile Systems Center

AIR FORCE S

FROM & MISSILE SYSTEMS CENTRE

GPS Status & Modernization Progress: Service, Satellites, Control Segment, and Military GPS User Equipment

CGSIC / ION GNSS+ 12-16 Sep 2016 Col Steve Whitney, Director Global Positioning Systems Directorate

Global Positioning Systems Directorate

SPACE AND MISSILE SYSTEMS CENTER

Professionals acquiring, delivering and sustaining reliable GPS capabilities to America's warfighters, our allies, and civil users

GPS Overview

SPACE AND MISSILE SYSTEMS CENTER

Department of Defense

- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOMS
- GPS Partnership Council

Maintenance/Security

- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Semi-Annually – ICWG: Worldwide Involvement
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World
 120 for US and 90 for GNSS

International Cooperation

- 57 Authorized Allied Users
 - -25+ Years of Cooperation
- GNSS
 - Europe Galileo
 - China Beidou
 - Russia GLONASS
 - Japan QZSS
 - India IRNSS

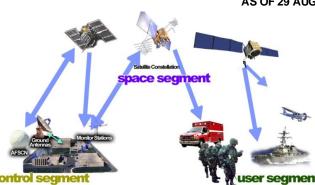
Civil Cooperation

- 1+ Billion civil & commercial users worldwide
- Search and Rescue
- Civil Signals
 - L1 C/A (Original Signal)
- L2C (2nd Civil Signal)
- L5 (Aviation Safety of Life)
- L1C (International)

<u>Spectrum</u>

- World Radio Conference
- International
 Telecommunication Union
- Bilateral Agreements
- Adjacent Band Interference

Department of Transportation


Federal Aviation Administration

Department of Homeland Security

U.S. Coast Guard

37 Satellites / 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age	Oldest
GPS IIR	12	14.7	19.1
GPS IIR-M	7	9.1	10.9
GPS IIF	12	2.6	6.3
Constellation	31	8.7	19.1

AS OF 29 AUG 16

GPS SIS Performance Scoreboard

SPACE AND MISSILE SYSTEMS CENTER

GPS SIGNAL IN SPACE (SIS) PERFORMANCE (CM)

	• BEST WEEK		BEST DAY		WORST DAY	
	ENDING	SIS	DATE	SIS	DATE	SIS
ROLLINGYEAR	14 APR 16	45.3	11 MAY 16	36.5	19 DEC 15	70.3
• • • BESTV	VEEK EVE	R	14 APR	16	45.3	3

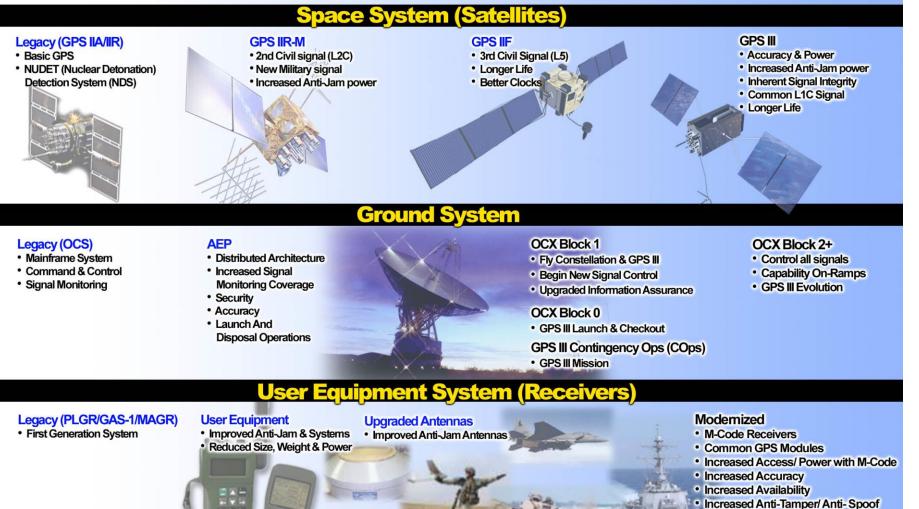
GPS Performance Report Card

SPACE AND MISSILE SYSTEMS CENTER

- 2013 report now available on gps.gov
 - http://www.gps.gov/systems/gps/performance/
- This report measures GPS performance against GPS SPS PS assertions

GPS.	GOV = Official U.S. Government information about the Global Positioning System (GPS) and related topics	Search	
<mark>ip meny</mark> Home	What's New Systems Applications Governance Mul	timedia Support	
Home » Systems » G	;PS » Performance		
SYSTEMS:	CDC Darfamana		
SPS Overview	GPS Performance		
pace Segment			
Control Segment	he U.S. government is committed to providing GPS to the civilian community at the performance levels specified in	Accuracy Our GPS Accuracy page provides more information about real-world GPS performance. GO THERE	
erformance	the GPS Standard Positioning Service (SPS) Performance		
Accuracy	Standard (PS). VIEW DOCUMENT ->		
Nodernization	The following study, commissioned by the Air Force, confirms that,		
Augmentation Systems	"in 2013 all of the SPS PS assertions examined were met or exceeded." The assertions evaluated include those associated with		
Technical Documentation	the accuracy, integrity, continuity, and availability of the GPS signal-in-space and the position performance standards.		
TAKE ACTION:	 An Analysis of Global Positioning System (GPS) Standard Positioning System (SPS) Performance for 2013 (2.5 MB PDF) 		

Table 2.1: Summary of SPS PS Metrics Examined for 2013


SPSPS08 Section	SPS PS Metric	2013 Status
	≤ 7.8 m 95% Global average URE during normal operations over all AODs	v +
3.4.1 SIS URE Accuracy	$\leq 6.0 \le 95\%$ Global average URE during normal operations at zero AOD	√ +
	$\leq 12.8~{\rm m}$ 95% Global average URE during normal operations at any AOD	∕+
	≤ 30 m 99.94% Global average URE during normal operations	∕+
	\leq 30 m 99.79% Worst case single point average URE during normal operations	∕+
3.5.1 SIS Instantaneous URE Integrity	$\leq 1X10^{-5}$ Probability over any hour of exceeding the NTE tolerance without a timely alert	¥+
3.6.1 SIS Continuity - Unscheduled Failure Interruptions	\geq 0.9998 Probability over any hour of not losing the SPS SIS availability from the slot due to unscheduled interrup- tion	v+
3.7.1 SIS Per-Slot Availability	≥ 0.957 Probability that (a.) a slot in the baseline 24-slot will be occupied by a satellite broadcasting a healthy SPS SIS, or (b.) a slot in the expanded configuration will be occupied by a pair of satellites each broadcasting a healthy SIS	v+
3.7.2 SIS Constellation Availability	≥ 0.98 Probability that at least 21 slots out of the 24 slots will be occupied by a satellite (or pair of satellites for ex- panded slots) broadcasting a healthy SIS	v+
	≥ 0.99999 Probability that at least 20 slots out of the 24 slots will be occupied by a satellite (or pair of satellites for expanded slots) broadcasting a healthy SIS	v+
3.7.3 Operational Satellite Counts	≥ 0.95 Probability that the constellation will have at least 24 operational satellites regardless of whether those opera- tional satellites are located in slots or not	√ +
3.8.1 PDOP	\geq 98% Global PDOP of 6 or less	√ +
Availability	$\geq 88\%$ Worst site PDOP of 6 or less	√ +
3.8.2 Position Service Availability	≥ 99% Horizontal, average location ≥ 99% Vertical, average location ≥ 90% Horizontal, worst-case location ≥ 90% Vertical, worst-case location	* +
3.8.3 Position Accuracy	≤ 9 m 95% Horizontal, global average ≤ 15 m 95% Vertical, global average ≤ 17 m 95% Horizontal, worst site < 37 m 95% Vertical, worst site	v+

✓+ - Met or Exceeded

GPS Modernization

SPACE AND MISSILE SYSTEMS CENTER

Increased Acquisition in Jamming

GPS IIF

SPACE AND MISSILE SYSTEMS CENTER

R FORCE S

8 Launches in 24 Months -- Most aggressive GPS launch schedule since 1993

GPS III

SPACE AND MISSILE SYSTEMS CENTER

0

- · GPS III is the newest block of GPS satellites
 - 4 civil signals: L1 C/A, L1C, L2C, L5
 - First satellites to broadcast common L1C signal
 - 4 military signals: L1/L2 P(Y), L1/L2M
- SV01-SV08 on contract; SV09 & SV10 negotiated
 - 2 year delay due to technical challenges w/ payload
 - SV09-10 same requirements baseline as SV01-08 but with no NDS payload
- Current Status
 - SV01 In Testing Flow
 - Baseline thermal vacuum testing completed 23 Dec 15
 - Electromagnetic Interference (EMI) test completed 14 May 16
 - SV02/03 In Assembly & Integration
 - SV04 thru 08 in box level assembly

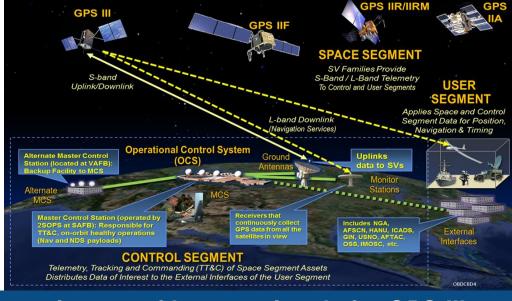
GPS III SV01 Available For Launch Dec 2016

GPS III SV 11+

- Build on the legacy of the GPS IIF and GPS III programs
 - Drive down costs, maintain production readiness to achieve 2023 need date
- Plan to compete GPS III SV 11+ Follow-on Production
 - Promote competition and reduce risk for production GPS space vehicles
- Two-phase approach
 - Phase 1: Production Readiness Feasibility Assessment
 - Gain insight into contractor SV & navigation payload production maturity & risk
 - The Boeing Company, Lockheed Martin Space Systems Company, and Northrop Grumman Aerospace Systems awarded contracts on 9 May 16
 - Phase 2: Production Competition
 - Full and open competition for up to 22 production ready GPS III SVs

GPS Next Generation Operational Control System (OCX)

- Next-generation C2 and cyber-defense for GPS
 - Worldwide, 24 hr/day, all weather, position, velocity and time source for military & civilian users
 - Improved PNT performance
 - Robust information assurance and cyber security
 - Modern civil signals & monitoring
 - Support to Military Code (M-Code) navigation warfare
- Incremental Development
 - OCX Block 0: launch & checkout for GPS III
 - OCX Block 1: operate & manage GPS constellation, replaces AEP, adds modern features
 - OCX Block 2: operate advanced M-Code features and Civil Signal Performance Monitoring
- Current Status: Working through program challenges
 - Quarterly Reviews with OSD AT&L, SECAF, and Raytheon CEO
 - SECAF Declared Nunn-McCurdy Breach on 30 Jun 16
 - Nunn-McCurdy Review in progress, requires decision by 13 Oct 16



Contingency Operations (COps)

SPACE AND MISSILE SYSTEMS CENTER

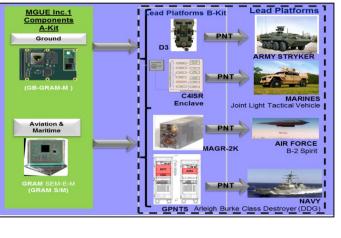
- Contingency Operations (COps) provides limited operations of GPS IIIs until OCX Block 1 delivery
 - Legacy signal operations
 - Test-only support for modernized signals
 - RTO projected Apr 2019
- Schedule supports current mission need date of Sep 2019 to sustain on-orbit legacy signal capability
- COPS relies on OCX Block 0 for GPS III launch, major anomaly, and disposal capabilities
- Completed PDR in May 2016

COps is a critical bridge enabling sustainment of Legacy signals for GPS III

Military GPS User Equipment (MGUE)

SPACE AND MISSILE SYSTEMS CENTER

- Commercial market-driven acquisition approach
 - Three vendors developing modernized receiver cards
- Conducting early integration activities to support Service-nominated Lead Platforms
 - Nov 2015: Delivered first prototype MAGR2K-M to support B-2 integration & test
 - Dec 2015: Successful tracking of Y-Code by prototype MAGR2K-M in B-2 Software Integration Lab (SIL)
 - Apr 2016: Successful integration and M-Code track: modernized Embedded GPS Inertial System (EGI)
 - Jun 2016: MGUE Final Test Articles (FTAs) provided to Navy DDG Destroyer Lead Platform program
 - Aug 2016: B-2 Integration with new antenna in the B-2 SIL; tracking M-Code
- Draft MGUE Increment 2 Capability Development Document (CDD) in coordination: Space Receiver, Handheld, Precision Guided Munitions



MAGR2K-M

GPS Director's Perspectives

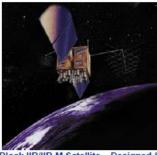
- GPS is the Global Utility
 - Committed to maintaining uninterrupted service "the Gold Standard"
- Embracing Gen Hyten's Space Enterprise Vision by continuing to enhance PNT resiliency
 - Includes examination of multi-GNSS receivers
- Appreciate the need for alternative PNT sources, and challenge the community (labs, industry, others) to propose & explore solutions
- Next-Generation Operational Control System (OCX) addressing cost and schedule challenges
 - Looking at opportunities to provide operational modernized signal capabilities prior to OCX

The men and women of the GPS Directorate

GLOBAL

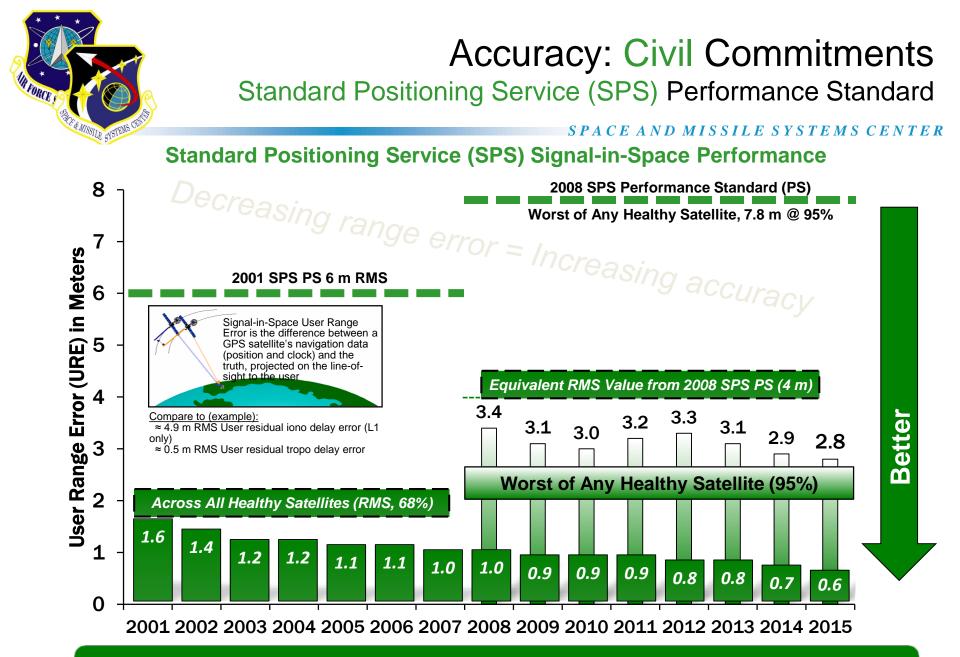
ACQUISITION PROFESSIONALS DELIVERING THE GOLD STANDARD IN SPACE-BASED PNT AND NDS SERVICES

Right

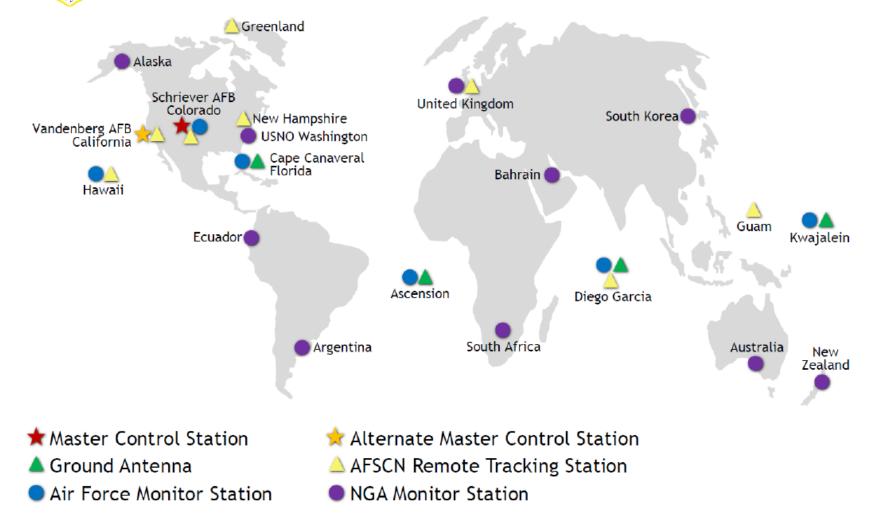


Constellation Snapshot

- 4 Generations of Operational Satellites
 - Block IIA 6 Residual
 - 7.5 year design life
 - Launched 1990-1997
 - Block IIR 12 Operational
 - 7.5 year design life (oldest operational satellite will be 19 years old in Jul)
 - Launched 1997-2004
 - Block IIR-M 7 Operational, 1 Residual
 - 7.5 year design life
 - Launched 2005-2009
 - Added 2nd civil navigation signal (L2C)
 - Block IIF 12 Operational
 - 12 year design life
 - Launched 2010-2016
 - Added 3rd civil navigation signal (L5)


ock IIA Satellite – Designed & Built by Rockwell International

Block IIR/IIR-M Satellite – Designed & Built by Lockheed Martin


Block IIF Satellite – Designed & Built by Boeing

System accuracy better than published standard

Ground Segment

SPACE AND MISSILE SYSTEMS CENTER

R FORCE S

UTCO Anomaly

- GPS MCS uploaded incorrect UTCO parameters to part of the GPS constellation.
 - Occurred from 25-26 Jan, ~14 hour window, 15 SVs affected.
 - Once identified and confirmed, fix uploaded to all affected SVs within 1.5 hours
- SMC/GP and 2SOPS have already implemented a software update to resolve core upload issue.
- SMC/GP also exploring:
 - Addition to the SPS PS, "resilience considerations for handling GPS data."
 - Increased UTCO parameter monitoring and exploring additional options
 - Follow-on software update to provide additional protections against UTCO issues