

GPS Adjacent Band Compatibility Assessment

56th Meeting of the CGSIC at the ION GNSS+ 2016 Conference Surveying, Mapping, and Geosciences Subcommittee Portland, Oregon September 12, 2016

> Stephen Mackey, USDOT/Volpe Center Hadi Wassaf, USDOT/Volpe Center Karl Shallberg, Zeta Associates Inc. Chris Hegarty, MITRE Corporation

Overview

- Assessment origins
- Test activities to date
- Preliminary test results

GPS Adjacent Band Compatibility Assessment

• EXCOM co-chair letter to NTIA (Jan. 2012)

Proposed development of GPS Spectrum interference criteria: "...that will help inform future proposals for non-space, commercial uses in the bands adjacent to GPS signals and ensure any such proposals are implemented without affecting existing and evolving uses of space-based PNT services vital to economic, public safety, scientific, and national security needs."

- DOT study to evaluate:
 - Phase 1: Adjacent-band power levels, as a function of offset frequency, necessary to ensure continued operation of all applications of GPS services
 - Phase 2: Adjacent-band power levels to ensure continued operation of all applications of GPS services by future GPS receivers utilizing modernized GPS and interoperable Global Navigation Satellite System (GNSS) signals


```
GPS ADJACENT-BAND
COMPATIBILITY ASSESSMENT
PLAN
```

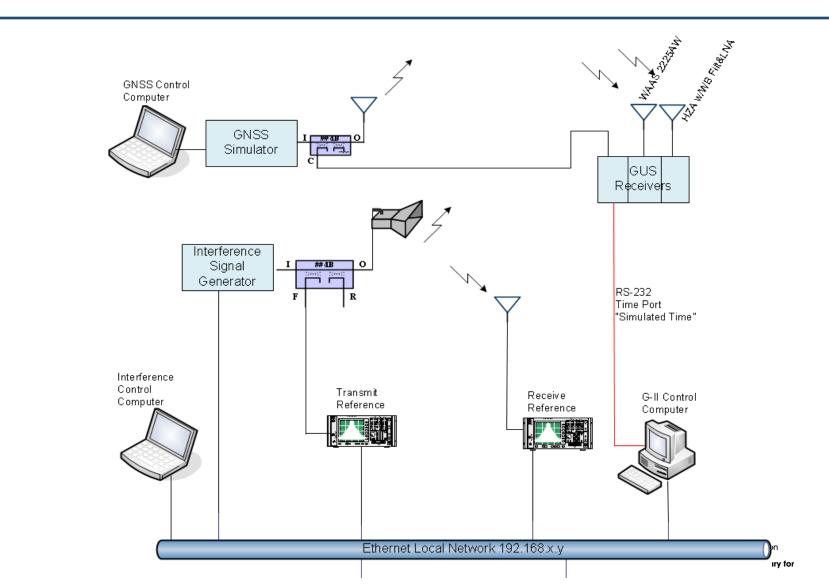
December	2012	

Cleared for Public Release

U.S. Department of Transportation Office of the Assistant Secretary for

Approach to DOT GPS Adjacent Band Compatibility Assessment

- Main elements of assessment
 - Determine equipment interference tolerance limits
 - Develop use cases/Interaction scenarios (assuming LTE base stations & handsets)
 - Derive tolerable interference power vs. frequency offset
 - Six categories of GPS/GNSS receivers
 - General Aviation (non certified), General Location/Navigation, High Precision & Networks, Timing, Space Based, and Cellular
- Conduct public outreach to ensure the plan, on going work, and assumptions are vetted and an opportunity to gain feedback
 - Held many public workshops
 - Federal Register Notice for comments/input on draft Test Plan
 - One-on-one discussions with industry
 - Open and transparent approach as possible


Receiver Interference Tolerance

- Equipment interference tolerance evaluations executed with radiated and wired (conducted) tests
- Radiated tests involved transmitting GNSS and interference signals in an anechoic chamber
 - Provides system evaluation with integrated receiver/antenna
 - Allowed wider participation
- Wired tests involved injecting GNSS and interference signals directly into receivers
 - Evaluated receivers and antennas separately
 - Antennas evaluated in anechoic chamber
 - Allowed extended evaluations for signal acquisition performance and Out-of-band emission (OOBE) levels

Office of the Assistant Secretary for Research and Technology

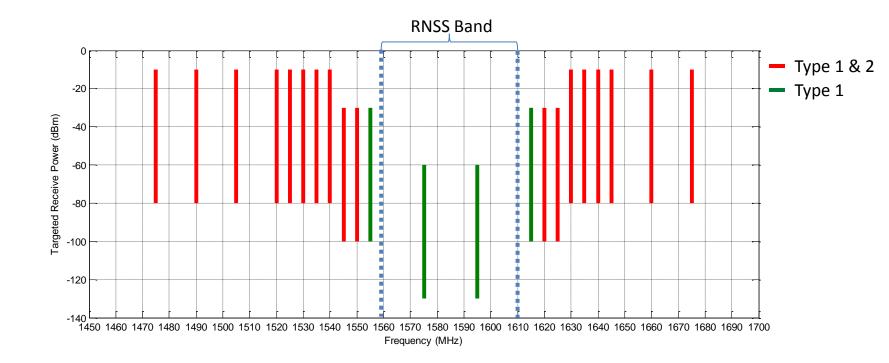
U.S. Department of Transportation

Chamber System Configuration

GNSS Signals Used in Testing

Signal
GPS C/A-code
GPS L1 P-code
GPS L1C
GPS L1 M-code
GPS L2 P-code
SBAS L1
GLONASS L1 C
GLONASS L1 P
BeiDou B1I
Galileo E1 B/C

U.S. Department of Transportation


Interference Test Signal Frequencies and Power Profiles (1/2)

Name	Value	Unit
f_{start}	1475	MHz
f_{end}	1675	MHz
$[p_{min_1}, p_{max_1}]$ (1475 to 1540 MHz)	[-80,-10]	dBm
$[p_{min_2}, p_{max_2}]$ (1545 to 1555 MHz)	[-100,-30]	dBm
$[p_{min_3}, p_{max_3}]$ (1575 and 1595 MHz)	[-130,-60]	dBm
$[p_{min_4}, p_{max_4}]$ (1615 to 1625 MHz)	[-100,-30]	dBm
$[p_{min_5}, p_{max_5}]$ (1630 to 1675 MHz)	[-80,-10]	dBm
Δf_1 (1475 to 1520 MHz)	15	MHz
Δf_2 (1520 to 1555 MHz)	5	MHz
Δf_3 (1575 and 1595 MHz)	N/A	MHz
Δf_4 (1615 to 1645 MHz)	5	MHz
$\Delta {f}_{5}$ (1645 to 1675 MHz)	15	MHz
ΔP	2	dB
Startup Time	15	min
T _{BL}	5	min
T _{step}	15	S
N _{cycle}	2	N/A

U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology

and (1630 to 1675 MHz) frequency ranges.

Interference Test Signal Frequencies and Power Profiles (2/2)

Data Collected

- Data needed to develop an interference tolerance mask (ITM) for each receiver:
 - $CNR(s, i, j. \Delta t)$ (here, s identifies the GNSS, i the SV, Δt is the reporting time increment)
- To the extent possible, additional data to report the state of the receiver at each time step
 - Number of satellites tracked for each GNSS service: $N_{SV}(s, j, \Delta t)$
 - Location: Lats $(j. \Delta t)$, Lons $(j. \Delta t)$, hs $(j. \Delta t)$ (relative to WGS84 or other Datum)
 - Pseudorange: Rs,i(j. Δt)
 - Carrier phase
 - Cycle slip or loss of carrier phase lock indicator (per satellite)
 - Loss of code and carrier tracking indicator, or inferred loss of tracking in the case when it is not reported by the receiver (per satellite)

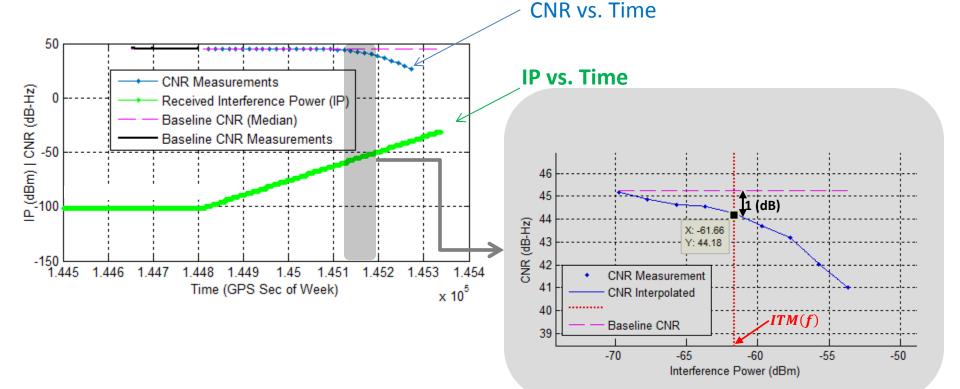
Radiated Testing Overview

- Radiated tolerance tests on April 25-29, 2016 at Army Research Laboratory's Electromagnetic Vulnerability Assessment Facility, White Sands Missile Range (WSMR), NM
- Participation included DOT's federal partners/agencies and GPS manufacturers
 - 80 receivers tested representing all six categories of GPS/GNSS receivers
- Tests executed
 - Linearity (CNR's estimators characterization)
 - 1 MHz Bandpass Noise (Type 1)
 - 10 MHz LTE (Type 2)
 - Intermodulation (effects of 3rd order intermodulation)

WSMR April 4th-29th Test Record

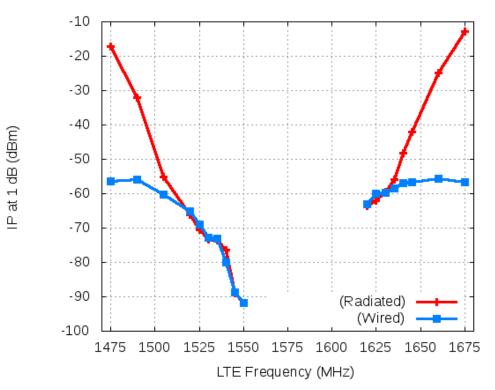
- Week 1:
 - Unpacked equipment, installed transmit antennas, established grid, characterized HPA and cables, dry-ran calibration and mapping, calibrated GNSS signals.
- Week 2: Dry-runs
 - Mapping, characterization & calibration
 - 1 MHz Noise and LTE tests
 - Linearity and in-band noise tests
 - Intermodulation tests
 - DoD started DUTs setup
- Week 3: DoD Test Week
 - Mapping and Calibration
 - 2 x Linearity Test
 - 2 x 1 MHz Noise & 10 MHz LTE tests
 - Intermodulation tests
- Week 4: DoT Test Week
 - Mapping and Calibration
 - 2 x Linearity Test
 - 2 x 1 MHz Noise & 10 MHz LTE tests
 - Intermodulation tests

Wired (Conducted) Test Overview

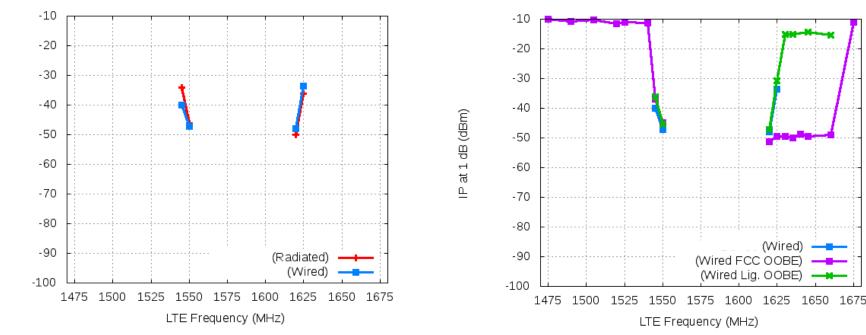

- Laboratory/wired tolerance tests on 25-29 July, 2016 at Zeta Assc. Fairfax, VA; Antennas characterized at MITRE Bedford, MA June-August 2016
- Receiver testing used same GNSS and interference signal generation equipment as chamber
- Participation by DOT's federal partners/agencies only
 - 14 receivers tested representing at least one from each category
- Same LTE and AWGN tests as WSMR plus extended evaluations investigating signal acquisition and OOBE interference

Office of the Assistant Secretary for Research and Technology

U.S. Department of Transportation


Data Processed to Produce a 1 dB Interference Tolerance Mask (ITM)

• Example for determining ITM for 1 frequency (1545) for PRN 31 for one of the Devices Under Test (DUT).


Example A DUT

Antenna not characterized but Filtering evident in comparison of radiated and wired 1 dB ITM's

U.S. Department of Transportation

Example B DUT

Radiated and wired 1 dB ITM's in good agreement consistent with expectations since both tests used device filter/LNA

at 1 dB (dBm)

۵.

Example of OOBE effects from wired testing. Degradation levels consistent with predicted 1 dB ITM's

Summary

- Significant testing completed and mask generation underway
 - Analysis continuing on other tests including acquisition, 1 MHz noise (including inband), linearity, Intermodulation...etc.
- Comparison of radiated and wired tests show good agreement
 - Differences primarily attributable to bypassing of (active) antennas in wired tests
- Wired OOBE results confirm predictions for tested levels

