

Calibration

## How Industry Utilizes GPS for Traceable Frequency Measurements and Calibrations

Jeff Gust Chief Corporate Metrologist Fluke Corp.

#### Where Frequency Measurements Are Needed

- Testing Laboratories (Biomedical, Chemical)
- Calibration Laboratories
- Legal Metrology
- Communications
- Industrial Process Control
- Electrical
- Police Radar
- Power/Energy





TIMER

FLUKE

### **Measurement Quality Needs**

 Metrological Traceability to the SI (International System of Units)



FLUKE

# **Metrological Traceability Defined**

FLUKE ®

International Vocabulary of Metrology (VIM)

Property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty



# SI (BIPM) to NIST



- Circular T report available at BIPM Website
- <u>http://www.bipm.org/en/bipm-services/timescales/time-</u> <u>ftp/cirt.html#nohref</u>
- NIST uncertainty  $\approx 1 \times 10^{-14}$

CIRCULAR T 344 2016 SEPTEMBER 07, 11h UTC

> BUREAU INTERNATIONAL DES POIDS ET MESURES ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 FAX. +33 1 45 34 20 21 tai@bipm.org

The contents of the sections of BIPM Circular T are fully described in the document " Explanatory supplement to BIPM Circular T " available at ftp://ftp2.bipm.org/pub/tai/publication/notes/explanatory\_supplement\_v0.1.pdf

| 01 - Difference between UTC and its local realizations UTC(k) and corresponding uncertainties. From 2015 July 1, 0h UTC, to 2017 January 1, 0h UTC, TAI-UTC = 36 s. From 2017 January 1, 0h UTC, TAI-UTC = 37 s. |     |        |       |       |        |        |        |        |       |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-------|-------|--------|--------|--------|--------|-------|----------------|
| Date 2016 0h UTC                                                                                                                                                                                                 |     | JUL 30 | AUG 4 | AUG 9 | AUG 14 | AUG 19 | AUG 24 | AUG 29 | Unce  | ertainty/ns    |
|                                                                                                                                                                                                                  | MJD | 57599  | 57604 | 57609 | 57614  | 57619  | 57624  | 57629  | $u_A$ | <sup>u</sup> B |

ISSN

# NIST to GPS



- GPS Data Archive maintained by NIST
- <u>https://www.nist.gov/pml/time-and-frequency-</u> <u>division/services/gps-data-archive</u>
- NIST Uncertainty  $\approx$  1 x 10<sup>-14</sup>

#### GPS monitoring data for the 30 day period ending 2016-08-31 (as received at NIST in Boulder, Colorado)

| Archi                                                               | ve Home <u>1 Day Avera</u> | ages <u>1 Hour Averages</u> | 10 Minute Averages       | Next Date Last Date |  |  |  |  |
|---------------------------------------------------------------------|----------------------------|-----------------------------|--------------------------|---------------------|--|--|--|--|
|                                                                     |                            |                             |                          |                     |  |  |  |  |
| GPS - UTC(NIST)<br>(one-hour averages using all satellites in view) |                            |                             |                          |                     |  |  |  |  |
| Hours                                                               | Mean Time<br>Offset (ns)   | Range (ns)                  | Frequency Offset         | Confidence (r)      |  |  |  |  |
| 720                                                                 | -8.20                      | 19.98                       | <1.0 x 10 <sup>-15</sup> | +0.17               |  |  |  |  |

### **GPS** Data Archive



|            |                      |                     | GPS PRN - UTC(NIST)<br>(data from individual GPS satellites) |                   |                          |  |  |
|------------|----------------------|---------------------|--------------------------------------------------------------|-------------------|--------------------------|--|--|
| GPS<br>PRN | Minutes<br>(In-View) | Mean Time<br>Offset | Range (ns)                                                   | Time<br>Deviation | Frequency Offset         |  |  |
| 1          | 12180                | -6.31               | 33.95                                                        | 2.38              | <1.0 x 10 <sup>-15</sup> |  |  |
| 2          | 10920                | -12.62              | 36.00                                                        | 1.56              | <1.0 x 10 <sup>-15</sup> |  |  |
| 3          | 11060                | -5.62               | 47.05                                                        | 2.77              | <1.0 x 10 <sup>-15</sup> |  |  |
| 4          |                      |                     |                                                              |                   |                          |  |  |
| 5          | 9340                 | -8.49               | 39.45                                                        | 1.94              | <1.0 x 10 <sup>-15</sup> |  |  |
| 6          | 9860                 | -7.22               | 35.35                                                        | 1.90              | <1.0 x 10 <sup>-15</sup> |  |  |
| 7          | 11420                | -6.54               | 33.60                                                        | 1.78              | +1.0 x 10 <sup>-15</sup> |  |  |
| 8          | 11040                | -7.26               | 32.80                                                        | 2.52              | +1.3 x 10 <sup>-15</sup> |  |  |
| 9          | 9650                 | -4.74               | 38.95                                                        | 1.67              | +2.6 x 10 <sup>-15</sup> |  |  |
| 10         | 11110                | -6.99               | 141.60                                                       | 3.23              | +1.7 x 10 <sup>-15</sup> |  |  |
| 11         | 11140                | -9.80               | 103.10                                                       | 3.49              | <1.0 x 10 <sup>-15</sup> |  |  |
| 12         | 9940                 | -8.28               | 40.30                                                        | 1.67              | <1.0 x 10 <sup>-15</sup> |  |  |
| 13         | 12730                | -7.46               | 39.85                                                        | 2.46              | <1.0 x 10 <sup>-15</sup> |  |  |
| 14         | 11230                | -9.63               | 34.45                                                        | 1.79              | <1.0 x 10 <sup>-15</sup> |  |  |
| 15         | 10020                | -8.54               | 58.30                                                        | 2.70              | <1.0 x 10 <sup>-15</sup> |  |  |
| 16         | 10150                | -8.42               | 34.05                                                        | 2.41              | +1.6 x 10 <sup>-15</sup> |  |  |
| 17         | 8540                 | -7.72               | 28.55                                                        | 1.62              | <1.0 x 10 <sup>-15</sup> |  |  |
| 18         | 12000                | -11.08              | 140.60                                                       | 2.19              | +1.3 x 10 <sup>-15</sup> |  |  |
| 19         | 10430                | -12.32              | 33.60                                                        | 1.91              | <1.0 x 10 <sup>-15</sup> |  |  |
| 20         | 9050                 | -12.24              | 48.35                                                        | 1.81              | <1.0 x 10 <sup>-15</sup> |  |  |
| 21         | 11850                | -12.23              | 32.30                                                        | 1.61              | <1.0 x 10 <sup>-15</sup> |  |  |
| 22         | 8000                 | -9.95               | 23.55                                                        | 1.36              | +1.2 x 10 <sup>-15</sup> |  |  |
| 23         | 10590                | -7.61               | 38.00                                                        | 1.69              | +1.8 x 10 <sup>-15</sup> |  |  |
| 24         | 13070                | -6.51               | 40.40                                                        | 2.32              | <1.0 x 10 <sup>-15</sup> |  |  |
| 25         | 10310                | -6.69               | 28.25                                                        | 1.92              | <1.0 x 10 <sup>-15</sup> |  |  |
| 26         | 11110                | -5.35               | 47.15                                                        | 2.22              | +1.8 x 10 <sup>-15</sup> |  |  |
| 27         | 12150                | -6.14               | 45.15                                                        | 2.36              | $+1.7 \times 10^{-15}$   |  |  |
| 28         | 12350                | -10.42              | 37.50                                                        | 1.69              | <1.0 x 10 <sup>-15</sup> |  |  |
| 29         | 9750                 | -8.99               | 34.15                                                        | 1.67              | <1.0 x 10 <sup>-15</sup> |  |  |
| 30         | 9790                 | -7.43               | 33.35                                                        | 1.76              | $+1.4 \times 10^{-15}$   |  |  |
| 31         | 9720                 | -5.21               | 33.55                                                        | 2.30              | $+1.2 \times 10^{-15}$   |  |  |
| 32         | 8780                 | -6.23               | 37.30                                                        | 1.54              | +1.3 x 10-15             |  |  |

# **GPS to Industry**

- GPS Disciplined Oscillator
- Fluke 910R
- Freq. offset (24 hour mean) < 1 x  $10^{-12}$
- Alan Deviation <  $1 \times 10^{-12}$  (t = 100 s)



**FLUKE**®





- The only GPSDSO that provides cal data of the oscillator from GPS
- Data is stored and available to the user



**Verification of Performance** 

- Fluke has a reference 910R that is continuously compared using the NIST FMAS
- Uncertainty  $\approx 3 \times 10^{-13}$
- Frequency offset is measured by FMAS and data is compared to the 910R internal data for agreement to 1 x 10<sup>-12</sup>
- 910R owners can send in their units for calibrations
- Certificates issued are under laboratory scope of accreditation to ISO/IEC 17025





# **GPSDSO to Counters and Sources**

- Time Base oscillators for Frequency Counters and Signal Generators calibrated via frequency comparison to GPSDSO
- Uncertainty  $\approx 1 \times 10^{-11}$



FLUKE

# **GPSDSO** as House Frequency Std

- Josephson Voltage Standard, primary standard for DC volt
- $\bullet\,K_{J\text{-}90}$  is assigned as 483 597.9 GHz/V
- Key contributor to uncertainty is frequency standard that drives Gunn diode at ≈ 75 GHz
- Uncertainty r



FLUKE

# **Down the Traceability Chain**

- Frequency Counter calibrates lower accuracy Signal Generators
- Signal Generators calibrate lower accuracy Frequency measurement devices
- Timometer (stop watch calibrator)
- Specified accuracy 0.05 s/day (≈ 5.8 x 10<sup>-7</sup>)



FLUKE

## Conclusion



- GPSDO's are used in nearly every frequency calibration laboratory around the world
- Industrial measurement traceability depends on GPS