Low Cost UAS for Mapping via Google Application

Stacey Lyle, PhD, RPLS
Associate Professor
Texas A&M University Corpus Christi Texas
School of Engineering and Computer Science

Conrad Blucher Institute for Surveying And Science
UAS

- RS 16
 - 16’ wing spread
 - 13,000’ ceiling
 - 16 hour flight time
 - 25 pound load
- Photogrammetry Payload
- Direct GeoReferencing
Low Cost Drone

Micro GPS Sensor
L1 and L2
RTK
IBM Silicon Germanium SiGe

(Lyle and Wilson, 2000 Institute for Navigation GPS 2000)
Low Cost Drone

Digital Imagery
- Direct Georeference with RTK GPS
- CCD/CMOS
- Full Frame Video
- RTK GPS 50 km baseline
- Shift, rotation, and scale

Field Test
- NASA Rocket

(Lyle, 2007 NASA Tech Briefs)
Smartphone RTK

Local Wi-Fi Network

Real Time Map

2G/3G/4G

RTN GPS: VRS or RTCM Server

(Lyle, Smith, Nygard 2011, ION)
USDA: Low Cost Machine Control

RTK Cellphones Solution
Ublox L1 C/A Phase
RTKLib
GeoRTK

(Lyle, 2013, *Experiment to test RTK GPS with Satellite “Internet to Tractor” for Precision Agriculture* International Journal of Agricultural and Environmental Information Systems)
L1 RTK Horizontal
Considerations

• DIY Drone- Open Sources
 – GPS Machine Control
 • 100 hz
 • Latency
 – Copter or Airplane
 • Autopilot
 • Mission Planning Software

• Arduunio
 – Drone Control
Application Steps

1. App starts - Settings
2. Survey Type
3. Start Job
4. **Smart phone gets Position**
 1. Wifi, AGPS, DGPS, PPP, or RTK
5. Surveying started with selected accuracy
6. Real Time Mapping and/or Control
7. App closed
Thank You

Stacey D. Lyle

6300 Ocean Drive
Corpus Christi, Texas 78412
Stacey.lyle@tamucc.edu
361-548-8852