National Positioning Navigation and Timing Architecture

Civil GPS Service Interface Committee Meeting

Karen Van Dyke, DOT/RITA/Volpe Center
Lt Col Patrick Huested, National Security Space Office
15 September 2008
Overview

• PNT Architecture Background
• Architecture Development
• Guiding Principles
• Recommendations
• Next Steps
More Effective & Efficient PNT and an Evolutionary Path for Government Provided Systems & Services

- **RITA** will lead effort on behalf of DOT for the civil community
- **NSSO** will develop a National PNT Architecture
- **NPCO** will initiate an effort with NSSO
Primary Objective

“...provide more effective and efficient PNT capabilities focused on the 2025 timeframe and an evolutionary path for government provided systems and services.”

--- Terms of Reference

Capability

- Near & Mid Term Decisions Guided by Architecture
- Based on Long Term Vision

System Emphasis

- Evolved Baseline (EBL)
- Should-Be Architecture

Architecture Emphasis

- As-Is Architecture
- Without Enterprise Architecture Strategy

Timeline

- Now
- 5 Years
- 10 Years
- 15 Years
- 20 Years
Scope

<table>
<thead>
<tr>
<th>USERS</th>
<th>DOMAIN</th>
<th>MISSIONS</th>
<th>SOURCES</th>
<th>PROVIDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military</td>
<td>Space</td>
<td>Location Based Services</td>
<td>GNSS</td>
<td>Military</td>
</tr>
<tr>
<td>Homeland</td>
<td>Air</td>
<td>Tracking</td>
<td>GNSS Augmentation</td>
<td>Civil</td>
</tr>
<tr>
<td>Security</td>
<td>Surface</td>
<td>Survey</td>
<td>Terrestrial</td>
<td>Commercial</td>
</tr>
<tr>
<td>Civil</td>
<td>Sub-Surface</td>
<td>Scientific</td>
<td>NAVAIDS</td>
<td>International</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td>Recreation</td>
<td>Onboard / User Equip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation</td>
<td>Networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weapons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communications and Timing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Broad Scope Required Innovative Approaches and Focused Analysis Efforts
Primary PNT Gaps

- Gaps primarily drawn from military’s PNT Joint Capabilities Document, with additions and modifications from parallel civil community documents and discussions
 - Operations in Physically Impeded Environments
 - Operations in Electromagnetically Impeded Environments
 - Higher accuracy with integrity
 - Notification of Hazardously Misleading Info (Integrity)
 - High Altitude/Space Position and Orientation
 - Geospatial information - access to improved GIS data (regarding intended path of travel)
 - Insufficient modeling capability
Cumulative Process

Data Gathering

Needs & Gaps

Environment, Technology & Evolved Baseline

Concept Development

Trade Space, Features & Architectures

Analysis & Assessment

Guiding Principles

Community Involvement

Architecture Development Team, Subject Matter Experts, Small Working Groups & Industry

Analytical Framework
Guiding Principles

VISION
US Leadership in Global PNT

STRATEGY
Greater Common Denominator

VECTOR
Multiple Phenomenologies

VECTOR
Interchangeable Solutions

VECTOR
Synergy of PNT & Communications

VECTOR
Cooperative Organizational Structures
US Leadership in Global PNT

• Based on a foundation of national policy
• Efficiently develop and field the best technologies and systems (e.g. cost, schedule, acceptable risks, user impact)
• Promulgate stable policies (commitment to funding, commitment to performance, advanced notice of change, etc)
• Foster innovation through competition within the commercial sector
• Ensure robust and enduring inter-agency coordination and cooperation
• Maximize the practical use of military, civil, commercial and foreign systems and technologies
• Judiciously develop and apply standards and best practices
Strategy

The US can Best Achieve Efficiency and Effectiveness through a Greater Common Denominator Approach

• Recommendations
 – Maintain GPS as a cornerstone of the National PNT Architecture
 – Monitor PNT signals to verify service levels, observe environmental effects, detect anomalies, and identify signal interference for near real-time dissemination
 – Transition or divest US GNSS augmentation assets that are unnecessarily redundant after capability is available from GPS modernization or other methods
 – Continue to investigate methods to provide high-accuracy-with-integrity solutions for safety-of-life applications
 – Develop a national approach to protect military PNT advantage
Vector: Multiple Phenomenologies

- Recommendations
 - Encourage appropriate development and employment of equipment that integrates information from diverse sources and information paths.
 - Assess the potential for the use of foreign PNT systems for safety-of-life applications and critical infrastructure users and, as appropriate, develop clear standards and criteria for their use.
 - Continue military PNT exclusive use policy while studying development of capabilities to enable military use of other signals.
 - Promote standards for PNT pseudolites and beacons to facilitate interchangeability and avoid interference.
 - Study evolution of space-based and terrestrial PNT capabilities to support diversity in PNT sources and information paths.
 - Ensure critical infrastructure precise time and time interval users have access to and take advantage of multiple available sources.
Vector: Interchangeable Solutions

• **Recommendations**

 – Use participation in international PNT-related activities to promote the interchangeability of PNT sources while assuring compatibility

 – Evolve standards, calibration techniques, and reference frames to support future accuracy and integrity needs

 – Identify and develop common standards that meet users’ needs for PNT information exchange, assurance and protection

 – Establish common standards that meet users’ needs for the depiction of position information for local and regional operations
Vector: Synergy of PNT & Communications

3

Pursue, where Appropriate, Fusion of PNT with New and Evolving Communications Capabilities

• Recommendation
 – Identify and evaluate methods, standards and potential capabilities for fusion of PNT with communications
Vector: Cooperative Organizational Structures

Promote Interagency Coordination & Cooperation to Ensure the Necessary levels of Information Sharing

- Recommendations
 - Develop a national PNT coordination process
 - Identify and leverage centers of excellence for PNT phenomenology and applications
 - Define, develop, sustain, and manage a PNT modeling and simulation core analytical framework
Recommendation Tree

US Leadership in Global PNT

The US can Best Achieve Efficiency and Effectiveness through a Greater Common Denominator Approach

Vision

Strategy

Vectors

Recommendations

1. Multiple Phenomenologies
2. Interchangeable Solutions
3. Synergy of PNT & Communications
4. Cooperative Organizational Structures
5. Protect Strategic Advantage
6. Integrated User Equipment
7. Civil Use of Foreign PNT
8. US Military Use of Non-Military Signals
9. PNT Pseudolites & Beacons
10. Evolution of PNT Capabilities
11. Critical Infrastructure & Time
12. Interchangeability with Foreign PNT Sources
13. Standards & Reference Frames
15. Grids & Coordinate Systems
16. Synergy of PNT & Communications
17. National PNT Coordination Process
18. Phenomenology & Application Champions
19. Modeling & Simulation Framework
A Plan to Achieve the Should-Be Architecture is Produced & Implementation Begins

The National PNT Architecture Effort Employs an Iterative, Interagency Process to Plan US Leadership in Global PNT

Architecture Development Transition Planning Implementation

v1 Should-Be Architecture

v2 Should-Be Architecture

vN

Effort Re-Examines the PNT Environment and Crafts and Implements the Next 20-Year Should-Be Architecture

Effort Repeats--the Next New Should-Be Architecture is Developed, Planned, and Implemented

Transition Plan provided to agencies

Architecture Effort and Schedule
Next Steps

- **Workshop(s) to Obtain Public Feedback on Recommendations**
 - **Date:** September 16
 - **Time:** 1PM – 4PM, starting with a presentation by NSSO
 - **Location:** Savannah International Trade and Convention Center, Rooms 105 & 106

- **Influence update to PNT planning documents**
 - Federal Radionavigation Plan
 - Five-Year National Space-Based PNT Plan

- **Architecture Transition Plan**
 - Event-based implementation timeline
 - Coordinate through Decision Coordination Group members and co-sponsors as appropriate
Points of Contact

• National Security Space Office
 – CAPT Milton Abner
 – NSSO.PNT@osd.mil
 – Website: http://www.acq.osd.mil/nsso/pnt/pnt.htm

• OASD/NII
 – Mr. Ray Swider
 – raymond.swider@osd.mil

• DOT RITA, Volpe Center
 – Ms. Karen Van Dyke
 – Karen.VanDyke@dot.gov