

2 SOPS Anomaly Resolution on an Aging Constellation

30 November 2000

Capt Michael Rivers, Navigation Tactics and Payload Mission Officer

DSN 560-2744 michael.rivers@schriever.af.mil

Overview

- Introduction
- SVN 15 and 18 glint firings
- SVN 29 Clock Heating due to Yaw Saturation
- SVN 19 Rubidium Frequency Standard End of Life
- SVN 16 Frequency Standards End of Life
- SVN 14 and 16 Simultaneous Anomalies
- Conclusion

Introduction

GPS Constellation Status

- 19 satellites past contractual mean mission duration (6 years)
- 15 satellites past design life (7.5 years)
- 5 satellites past updated mean mission duration
 - -9 1/4 years for Block II
 - -10 3/4 years for Block IIA
 - -7 1/2 years for Block IIR)
- 16 satellites one component away from navigation mission failure

Introduction

- Air Force has no precise methodology for predicting when satellites will fail
- Satellites past their design life are causing anomalies that impact users
- Illustrate difficulties of operating such a constellation
- Highlight the drawbacks of maintaining "launch when failures occur" approach

- Five satellites with only 3 reaction wheels
- Satellites operated in a different mode
- Creates possibility for glint firing during eclipse season
 - Satellite's Earth sensor misinterprets the sun's reflection off the Earth's surface as an attitude error
 - Leads to thruster firings which can perturb the satellite's orbit
 - Can cause significant ranging errors

- Ranging errors
 - Exceeded 6 meters during 48 fifteen minute intervals and 10 meters during 8 fifteen minute intervals
 - Resulting in three dimensional errors of up to 23 meters
- Solution to this problem is modified Jet Control Logic (JCL) cycling
 - Turn off thrusters during eclipse to prevent thruster firing
 - Must maintain contact with the satellite during full eclipse - manning intensive operation

SVN 29 Clock Heating due to Yaw Saturation

- Problem with its attitude subsystem that requires a different operational mode
 - Requires manual momentum dumps
- Last summer, 2 SOPS found the satellite with both yaw and pitch momentum saturated
 - Caused clock panel to yaw into the sun
 - Rubidium frequency standard heating caused change in frequency drift from negative to positive
 - Difficult for the Kalman filter to model change from positive back to negative
- Modeling problems led to ranging errors

ANSTER OF SPHE

- Satellite was on its last unused frequency standard (a Rubidium) in the summer of 1999
 - It had been very stable
 - Errors in GPS time transfer performance indicated that something was destabilizing the GPS time scale
 - 2 SOPS noticed that SVN 19's frequency standard had become significantly less stable
 - SVN 19 was removed from an estimating partition
 - Large number of contingency uploads and frequency steps indicated the problem was getting worse
 - Vehicle was set unhealthy because we could not keep errors below tolerance

SVN 19 Rubidium Frequency Standard End of Life

- Rubidium frequency standard never stabilized
- 2 SOPS was forced to resort to a Cesium frequency standard
 - Cs had been turned off in the past for poor service
 - Beam current of 1.8 nanoamps when 2 SOPS operational limit is 2.0 nanoamps
 - Since swapping to this frequency standard, it has been the worst performer in 7 out of 7 months
 - Its beam current is down to 1.39 nanoamps
 - Only a short matter of time before this last frequency standard fails

SVN 16 Frequency Standards End of Life

- In late Feb, failure of its Cs frequency standard
 - Running off its VCXO, ranging error of 450 meters in 1 1/2 hours
 - Satellite taken off the air before errors grew too large
 - Cs recovered and satellite monitored for two days before being set healthy to users
 - Two weeks later: same failure, except ranging errors grew to 1300 meters within 1 1/2 hours
 - Cs recovered again, but judged an integritymonitoring problem
- Satellite had an unused Rb frequency standard
 - FS was never stable enough to set operational

SVN 16 Frequency Standards End of Life

- Satellite now in the same situation as SVN 19
 - All frequency standards had been operated and selected as unfit for operational service
 - Only options: Unstable Rb or Cs with a beam current of 0.8 nanoamps
 - Unstable Rb chosen as less risky option
 - Rb operated poorly, but within tolerances for 3 1/2 months
 - Became unstable and satellite was set unhealthy
 - Swapped to Cs FS on August 14, 2000
 - 2 SOPS assessing its performance

SVN 14 and 16 Simultaneous Anomalies

- Two days before 2 SOPS switched to SVN 16's last Rubidium, SVN 14 experienced its second reaction wheel failure
 - SVN 14 could no longer point at Earth
 - Anomaly occurred when Ascension monitor station was unavailable due to a comm failure
 - -Situation was not recognized until hours later
 - SVN 14 never recovered attitude pointing capability

SVN 14 and 16 Simultaneous Anomalies

- Both SVN 14 and 16 off the air and in view at the same time
 - Caused coverage problems and Dilution of Precision (DOP) spikes over the US and Kashmir
 - Coverage loss (lack of 4 satellites in view)
 - Oklahoma, Kansas, Nebraska and northern Texas lasting up to 18 minutes
 - DOP spikes as high at 888 (lasting < 1 minute)</p>
 - Over the areas mentioned above and Nevada, Utah, Arizona, New Mexico and Colorado

SVN 14 and 16 Simultaneous Anomalies

- Solution: get 14 and 16 on the air or move another satellite to fill the gap
 - SVN 14 never usable, spun-up and boosted
 - 16's Rubidium still warming up
 - Aerospace Corporation analysis concluded SVN 19 could most quickly fill the gap without negatively impacting other users
 - SVN 19 on borrowed time
 - SVN 44 launched to fill this gap (healthy Aug 00)

Conclusion

- Anomalies caused by aging are creating large ranging errors, impacting users
- 2 SOPS was able to prevent most of these anomalies from severely impacting users
 - Depends on the availability of Ground Antennas (92% vis) and Monitor Stations (88% vis)
- Errors combined with poorly performing satellites, increased ground and satellite outages, and poor geometry can cause large navigation and time transfer errors

Conclusion

- The Air Force is addressing GPS sustainment policy
 - Consider replacing satellites before they fail and become an operational risk to users
 - The world's increasing dependence on GPS should increase our aversion to risk
- 60 day call-up may not be enough
- Risk may seem small, but it is important to address even a low level of risk