

GPS Constellation, Modernization Plans and Policy

Col Harold W. Martin III

Deputy Director, National Coordination Office United States of America

USTTI Seminar

Washington, D.C. October 23, 2012

Overview

- Introduction
- Global Positioning System
- Modernization Plans
- U.S. Policy

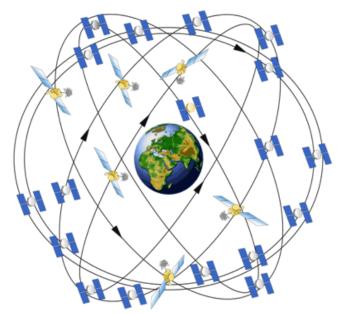
GPS enables a diverse array of applications

Satellite Operation

Overview

- Introduction
- Global Positioning System
- Modernization Plans
- U.S. Policy

GPS IIF-3 Launch


SVN-65, October 4, 2012

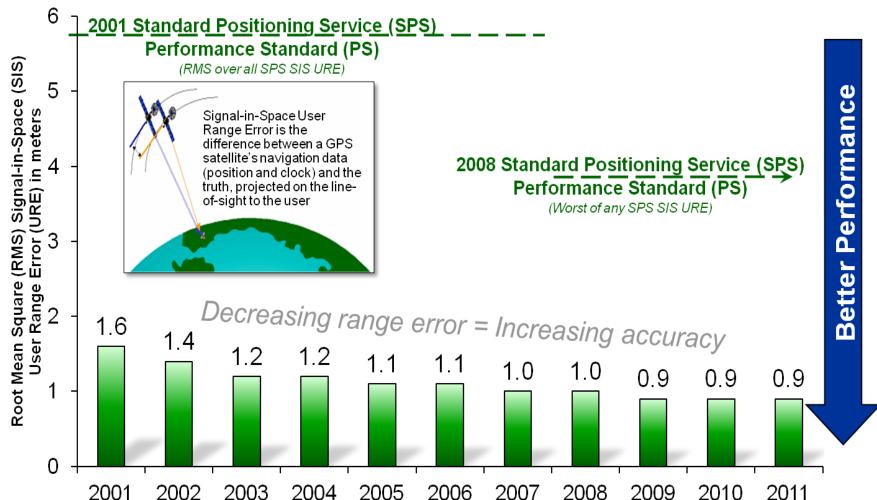
The Global Positioning System

- Baseline 24+3 satellite constellation in medium earth orbit
- Global coverage, 24 hours a day, all weather conditions
- Satellites broadcast precise time and orbit information on L-band radio frequencies
- Two types of signals:
 - Standard (free of direct user fees)
 - Precise (U.S. and Allied military)
- Three segments:
 - Space
 - Ground control
 - User equipment

GPS Constellation Status

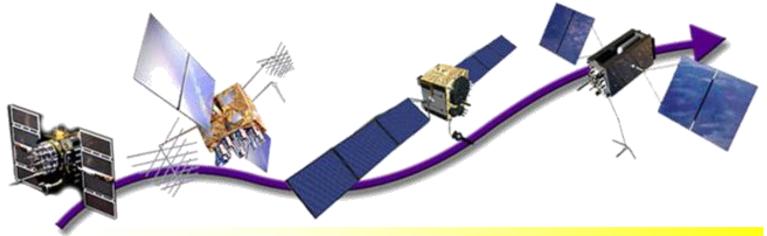
35 Satellites (30 Operational) (Baseline Constellation: 24+3)


- 12 Block IIA
 - 3 on-orbit in residual status
- 12 Block IIR
- 8 Block IIR-M
 - Transmitting new second civil signal
 - 1 GPS IIR-M in on-orbit testing
- 3 Block IIF
 - SVN-65 operational late 2012
- Global GPS civil service performance commitment met continuously since December 1993


GPS Operational Control Segment (OCS)

System accuracy exceeds published standard

Overview



- Introduction
- Global Positioning System
- Modernization Plans
- U.S. Policy

GPS Modernization Program

Increasing System Capabilities * Increasing User Benefit

Block IIA/IIR

Basic GPS

- Standard Service
 - Single frequency (L1)
 - Coarse acquisition (C/A) code navigation
- Precise Service
 - Y-Code (L1Y & L2Y)
 - Y-Code navigation

Block IIR-M, IIF

IIR-M – Basic GPS capability plus

- 2nd civil signal (L2C)
- M-Code (L1M & L2M)

IIF – IIR-M capability plus

- 3rd civil signal (L5)
- 2 Rb + 1 Cs Clocks
- 12 year design life

Block III

- Backward compatibility
- 4th civil signal (L1C)
- 4x better User Range Error than IIF
- Increased availability
- Increased integrity
- 15 year design life

GPS Modernization – New Civil Signals

- Second civil signal "L2C"
 - Designed to meet commercial needs
 - Available since 2005 without data message
 - Currently broadcasts from 9 satellites
 - Full capability: 24 satellites and full CNAV approximately 2018

- Third civil signal "L5"
 - Designed to meet transportation safety-of-life requirements
 - Currently broadcasts from 2 satellites
 - 24 satellites and full CNAV approximately 2021
- Fourth civil signal "L1C"
 - Designed for GNSS interoperability
 - Specification developed in cooperation with industry
 - Fully designed and in testing
 - Will be broadcast by GPS III
 - Available on 24 satellites approximately 2026

Improved performance in challenged environments

Ground Segment Status

Ground Antenna

- Current system Operational Control Segment (OCS)
 - Currently flying expanded 24+3 constellation of GPS Block II satellites
 - Provides worldwide ground antenna and monitor station with redundant coverage
- Next Generation Operational Control System (OCX) development continues
 - Will provide ability to fly GPS III and operate modernized GPS signals
 - OCX Block I deployment planned for 2016

Overview

- Introduction
- Global Positioning System
- Modernization Plans
- U.S. Policy

U.S. Policy History

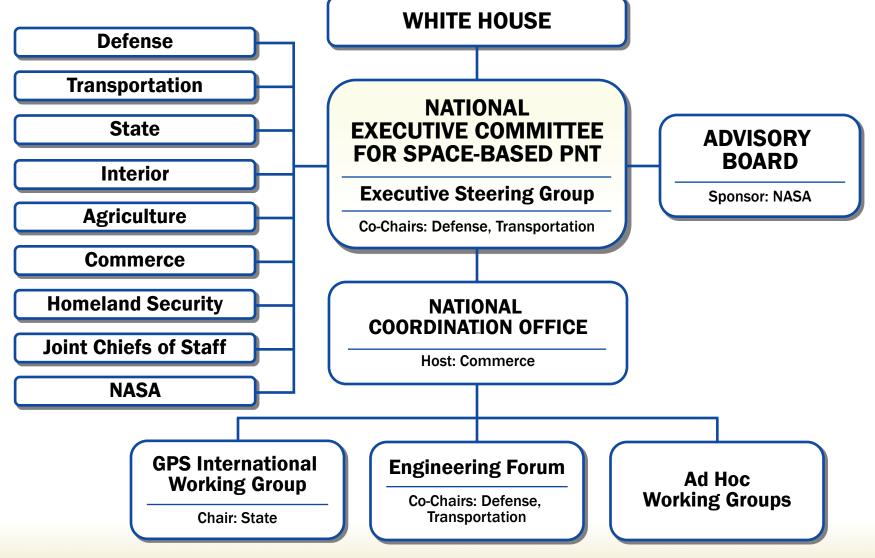
- 1978: First GPS satellite launches
- 1983: President announces civilian access to GPS following KAL 007
- 1991: U.S. offers free civil GPS service to the International Community
- 1996: First U.S. GPS Policy establishes joint civil/military management
- 1997: U.S. law provides civil GPS access free of direct user fees
- 2000: President ends use of Selective Availability
- 2004: President issues U.S. Policy on Space-Based PNT
- 2004: Agreement signed on GPS-Galileo Cooperation
- 2007: Selective Availability eliminated from GPS III satellites
- 2010: National Space Policy provides high-level PNT guidance

National Space Policy, 2010

The U.S. must maintain its leadership in the service, provision and use of Global Navigation Satellite Systems (GNSS)

- Provide continuous worldwide access to GPS for peaceful uses, free of direct user charges
- Encourage compatibility and interoperability with foreign GNSS services
- Operate and maintain constellation to satisfy civil and national security needs
 - Foreign PNT may be used to strengthen resiliency
- Invest in domestic capabilities and support international activities to detect, mitigate and increase resiliency to harmful interference

U.S. Objectives in Working with Other GNSS Service Providers


- Ensure compatibility ability of U.S. and non-U.S. spacebased PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals
- Achieve interoperability ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal
 - Primary focus on the common L1C and L5 signals

Pursue through Bilateral and Multilateral Cooperation

National Space-Based PNT Organization

Summary

- GPS continues to meet or exceed our performance commitments to worldwide users
- Modernization of all GPS segments on track
- Striving to continually improve navigation and timing services while maintaining backward compatibility with legacy equipment.
- GPS is committed to open and transparent cooperation with the international GNSS community

For Additional Information

 NCO maintains GPS.gov as a central public resource for official USG information about GPS and related topics

Contact Information

U.S. National Coordination Office Space-Based Positioning, Navigation and Timing 1401 Constitution Ave, N.W. Washington, D.C. 20230-0001

Ph: (202) 482-5809 Harold.Martin@pnt.gov

This presentation and other GPS information:

www.gps.gov

Thank You!