

U.S. Update on GNSS Programs, Plans, and International Activities

David A. Turner Deputy Director

Office of Space and Advanced Technology Bureau of Oceans, and International Environmental & Scientific Affairs U.S. Department of State

May 16, 2012

U.S. Space-Based PNT Policy

- GPS & Augmentation Programs
 Status
- International Cooperation Activities
- Summary

U.S. National Space Policy

Space-Based PNT Guideline: Maintain leadership in the service, provision, and use of GNSS

- Provide civil GPS services, free of direct user charges
 - Available on a continuous, worldwide basis
 - Maintain constellation consistent with published performance standards and interface specifications
 - Foreign PNT services may be used to complement services from GPS
- Encourage global *compatibility* and *interoperability* with GPS
- Promote transparency in civil service provision
- Enable market access to industry
- Support international activities to detect and mitigate harmful interference

- U.S. Space-Based PNT Policy
- GPS & Augmentation
 Programs Status
- International Cooperation Activities
- Summary

GPS Constellation Status

- 31 space vehicles currently operational
 - 10 GPS IIA
 - 12 GPS IIR
 - 7 GPS IIR-M
 - 2 GPS IIF
- 3 additional satellites in residual status
- GPS IIF-2 launched on 16 Jul 2011
 - Satellite Vehicle Number 63 (PRN 1) set healthy 14 Oct 2011
 - Second operational L5 signal
 - Increases the enhanced GPS clock performance coverage
 - Next GPS IIF Launch planned Sep 2012

Global GPS service performance commitment met continuously since December 1993

GPS SPS Signal in Space Performance

System accuracy exceeds published standard

GPS Program Evolution

GPS Modernization – New Civil Signals

Second civil signal "L2C"

- Designed to meet commercial needs
- Higher accuracy through ionospheric correction
- Available since 2005 without data message
 - 9 satellites currently transmitting L2C
- Full capability: 24 satellites ~2016

Third civil signal "L5"

- Designed to meet demanding requirements for transportation safety-of-life
- Uses highly protected Aeronautical Radio Navigation Service (ARNS) band
- On orbit broadcast 10 APR 2009 on IIR-20(M) secured ITU frequency filing
- Full capability: 24 satellites ~2019

GPS Modernization – Fourth Civil Signal

Under Trees

Urban Canyons

Fourth civil signal "L1C"

- Designed with international partners for interoperability
- Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
- Specification developed in cooperation with industry recently completed
- Launches with GPS III in 2014
- On 24 satellites by ~2021

http://www.gps.gov/systems/gps/modernization/civilsignals/

Wide Area Augmentation System (WAAS) Architecture

Stations

38 Reference 3 Master **Stations**

2 Geostationary Satellite Links

2 Operational Control Centers

WAAS Implementation

- Phase I: IOC (July 2003) Completed
 - Provided LNAV/VNAV/Limited LPV Capability
- Phase II: Full LPV (FLP) (2003 2008) Completed
 - Improved LPV availability in CONUS and Alaska
 - Expanded WAAS coverage to Mexico and Canada
- Phase III: Full LPV-200 Performance (2009 2013)
 - Development, modifications, and enhancements to include tech refresh
 - Steady state operations and maintenance
 - Transition to FAA performed 2nd level engineering support
 - Begin GPS L5 transition activities
- Phase IV: Dual Frequency (L1, L5) Operations (2014 2028)
 - Complete GPS L5 transition
 - Will significantly improve availability and continuity during severe solar activity
 - Will continue to support single frequency users
 - Steady state operations and maintenance

Nationwide Differential GPS

- Expansion of maritime differential GPS (DGPS) network to cover terrestrial United States
- Built to international standard adopted in 50+ countries
- System Specifications:
 - Corrections broadcast at 285 and 325 kHz using Minimum shift Keying (MSK) modulation
 - Real-time differential GPS corrections provided in Radio Technical Commission for Maritime Services (RTCM) SC-104 format
 - No data encryption
 - Real-time differential corrections for mobile and static applications

September 2009

Single coverage over 92% of Continental United States (CONUS) ; double coverage over 65% of CONUS

- U.S. Space-Based PNT Policy
- GPS & Augmentation Programs
 Status
- International Cooperation Activities
- Summary

Planned GNSS

- Global Constellations
 - GPS (24+)
 - GLONASS (30)
 - Galileo (27+3)
 - Compass (27+3 IGSO + 5 GEO)

- Regional Constellations
 - QZSS (4+3)
 - IRNSS (7)
- Satellite-Based Augmentations
 - WAAS (3)
 - MSAS (2)
 - EGNOS (3)
 - GAGAN (2)
 - SDCM (3)

U.S. Objectives in Working with Other GNSS Service Providers

- Ensure compatibility ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals
- Achieve interoperability ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal
- Promote fair competition in the global marketplace

Pursue through Bilateral and Multilateral Cooperation

Bilateral Cooperation

• U.S.-Russia Joint Statement issued Dec 2004

- Working Groups on GNSS compatibility/interoperability and search & rescue service cooperation
- Last meeting in U.S., October 2011
- Reaffirmation of intent to cooperate signed Sep 2011
- U.S.-EU GPS-Galileo Cooperation Agreement signed in June 2004
 - Four working groups set up under the 2004 Agreement
 - Plenary meeting scheduled for June 2012 in Washington, D.C.
- U.S.-Japan Joint Statement on GPS Cooperation 1998
 - Last plenary meeting in Jan 2012 in Washington, D.C.
 - Bilateral agreements for QZSS monitoring stations in Hawaii and Guam
- U.S.-India Joint Statement on GNSS Cooperation 2007
 - ITU compatibility coordination and civil space talks pending

- Operator-to-operator coordination under ITU auspices for GPS & Beidou/Compass was completed in September 2010
- The U.S. is interested in engaging in further bilateral discussions with China on civil GNSS services and applications
 - Successful Workshop on GNSS conducted by the Chinese Academy of Engineering and U.S. National Academy of Engineering immediately following CSNC 2011
 - Bilateral meeting between the CAAC (中国民用航空局) and U.S. FAA focused on aviation satellite navigation issues also occurred following CSNC 2011
 - On going discussions with China Satellite Navigation Office on the margins of multilateral international meetings

International Committee on Global Navigation Satellite Systems (ICG)

- Emerged from 3rd UN Conference on the Exploration and Peaceful Uses of Outer Space July 1999
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
- Members include:
 - GNSS Providers (U.S., EU, Russia, China, India, Japan)
 - Other Member States of the United Nations
 - International organizations/associations

http://www.icgsecretariat.org

- The development of Multi-GNSS monitoring networks was a major topic of discussion
 - The Committee endorsed the IGS Multi-GNSS Experiment
 - A Subgroup of WG-A will be formed to collectively investigate international GNSS monitoring and assessment
- The Compatibility sub-group of WG-A, with participation from all interested system providers, will initiate discussions and collaboration on Open Service GNSS performance parameters, including definitions and calculation methods
- Templates describing the geodetic and timing references for all systems have been completed and will be available on the ICG website
- Interference Detection and Mitigation (IDM) Workshop was approved by the Committee

ICG-7 will be hosted by China in November 2012

- U.S. Space-Based PNT Policy
- GPS & Augmentation Programs
 Status
- International Cooperation Activities
- Summary

Summary

GPS performance is better than ever and will continue to improve

- Modernization of GPS is on track
- Augmentations enable even higher performance
- U.S. policy encourages worldwide use of civil GPS and augmentations
- The U.S. is committed to International cooperation in pursuit of systems Compatible and Interoperable with GPS

http://www.gps.gov/

THANK YOU!

David A. Turner Deputy Director Space and Advanced Technology U.S. Department of State OES/SAT, SA-23, Suite 410 Washington, D.C. 20520 202.663.2397 (office) 202.320.1972 (mobile)

TurnerDA@state.gov

http://www.state.gov/e/oes/sat/