

Broadcast Positioning System (BPS) Time and Position Using ATSC 3.0 Signals

Dr. Pat Diamond, Private Citizen Member PNT Advisory Board

U.S. Critical Infrastructure Depends on Accurate PNT Service (GPS)

Dependency on GPS

The PNT signals and other data from GPS satellites allow these infrastructure capabilities to function reliably.

• 7 billion devices are in use worldwide

Without these capabilities, the US economy would come to a standstill.

• US economy could lose \$B per day as noted by several sources. No exact number known.

Recent outages in Denver and Dallas demonstrate the need to provide resilient augmentation systems.

Our adversaries are aware of this weakness and have implemented augmentations within their national boundaries to mitigate this exact same weakness.

US and its allies need to do the same.

Executive Order by the President

Per Executive Order 13905 [3] on "Responsible Use of PNT," the 16 Sector Risk Management Agencies (formerly Sector Specific Agencies) are directed to develop PNT profiles pursuant to the NIST 8323 master profile to identify and mitigate vulnerabilities.

Technical Requirements to Satisfy Critical Infrastructure Usability Needs

Name of Industry	Timing Requirements	
Mobile Wireless Networks	1.1 μsec traceable to UTC	
Equity Trading Systems	Timestamp accuracy to 1 µsec to UTC NIST (SEC Section 613 rules, MifID II EU)	
Power Grid	1 μsec to UTC, IEEE 37-238, (Synchro-phasors)	
Other CI Industries	200 ns to UTC or better	

ATSC 3.0-Based BPS is one Solution

- Can meet timing requirements of critical infrastructure
- Broadcast infrastructure is already built
- Based on a global standard
- Nationwide coverage
- Can be made totally independent of GPS
- Passive consumer service no uplink is required
- Resilient high power, high tower, frequency diversity, backup generators
- US government agencies are engaged on the idea

What is the Broadcast Positioning System (BPS)?

A system and method of estimating time and position at a receiver using ATSC 3.0 broadcast signals

Compliant with ATSC 3.0 standard;

uses datacasting feature

Independent and stand-alone

• GPS, Internet or cellular connectivity not required

ALLEL

Pseudorange Multilateration Concept

Pseudorange equations:

$$r_{1} = \sqrt{(x_{1} - x)^{2} + (y_{1} - y)^{2}} + ct$$

$$r_{2} = \sqrt{(x_{2} - x)^{2} + (y_{2} - y)^{2}} + ct$$

$$r_{3} = \sqrt{(x_{3} - x)^{2} + (y_{3} - y)^{2}} + ct$$

Preamble Timestamping Challenge

Source: ATSC Standard, Physical Layer Protocol, Doc. A/322:2020

ALLEL

Time Synchronization at the Transmitter

PNT Capabilities of BPS

One TV tower can provide accurate time at a known position

• 100 ns, 95% of the time

Four TV towers can provide both time and position estimation

100 m average accuracy expected

Can detect GPS spoofing

Can enable GPS-BPS hybrid location

Current ATSC 3.0 Market Coverage in US

BPS (UHF & VHF) Coverage at Full Deployment

Average signal reception:

- 17 towers at 1.5 m antenna height
- 70 towers at 50m antenna height

Coverage at 1.5 m antenna height:

At demodulation threshold (-5 dB SINR) Threshold + 10 dB Threshold + 20 dB

Reliable and Traceable Timing Source

Increasing Resiliency and Accuracy

Report emission time and location of neighboring stations

Report timestamping errors of previous frames

Nationwide self-synchronizing network

Self Synchronizing Network with Traceable Time

Implementation at NAB 1M Lab

Prototype Running at NAB 1M Lab

ATSC 3.0 Testbed at NAB 1M Lab

Operational BPS Prototype at NAB 1M Lab

Development Phases

Building Coalition for Next Steps

Upgrade HW and SW for better accuracy

Deploy BPS at a transmission facility in a live market

Demonstrate timing use case at a known location

Funding and large scale deployment

Collaboration with Test Receiver Design

Timing at a known location

- Listen to multiple ATSC 3.0 signals and maintain an ensemble of clocks
- Compute and show the difference between BPS and GPS time
- Show the correlation peaks and effects of multipath to study propagation effects

Positioning (Timing at unknown location)

- Listen to multiple ATSC 3.0 signals and compute location
- Provide traceable timing reference at locations whose coordinates are unknown
- Compare GPS vs. BPS locations errors and display

Stretch Goals

- Use BPS to validate GPS results
- Compute hybrid locations using BPS and GPS psuedoranges

Thank You

Backup Slides

ATSC 3.0 Signal

Bootstrap – time of arrival (TOA) estimation **Preamble** (L1-Basic and L1-Detail) – timing info **Data PLP** - tower location and neighbor measurement info

Time Info Posi	ormation ition	Tim	ne Information (L1D_time_sec, L1D_tin L1D_time_usec, L1D_ti	ne_msec, me_nsec	.)	
Payload	Boot strap	Preamble	Payload	Boot strap	Preamble]

Source: ATSC Standard, Physical Layer Protocol, Doc. A/322:2020

Multilateration Iterative Solution

$$\Delta x = \begin{bmatrix} \Delta x \\ \Delta y \\ -c\Delta t \end{bmatrix} \qquad H = \begin{bmatrix} \frac{(x_1 - \hat{x})}{\sqrt{(x_1 - \hat{x})^2 + (y_1 - \hat{y})^2}} & \frac{(y_1 - \hat{y})}{\sqrt{(x_1 - \hat{x})^2 + (y_1 - \hat{y})^2}} & 1 \\ \frac{(x_2 - \hat{x})}{\sqrt{(x_2 - \hat{x})^2 + (y_2 - \hat{y})^2}} & \frac{(y_2 - \hat{y})}{\sqrt{(x_2 - \hat{x})^2 + (y_2 - \hat{y})^2}} & 1 \\ \frac{(x - \hat{x})}{\sqrt{(x_3 - \hat{x})^2 + (y_3 - \hat{y})^2}} & \frac{(y - \hat{y})}{\sqrt{(x_3 - \hat{x})^2 + (y_3 - \hat{y})^2}} & 1 \end{bmatrix} \qquad \Delta r = \begin{bmatrix} \Delta r_1 \\ \Delta r_2 \\ \Delta r_3 \end{bmatrix}$$

Least-square solution: $\Delta x = (H^T H)^{-1} H^T \Delta r$

Weighted least-square solution: $\Delta x = (H^T W H)^{-1} H^T W \Delta r$

where $W = \begin{bmatrix} w_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_n \end{bmatrix}$

28

Simulation Set-up

4 towers at (50000, 0), (0, 50000), (-50000, 0), and (0, -50000) meters on X-Y plane Random TOA estimation error between -5 m to +5 m (uniform dist.)

200 m antenna height

Standard deviation well above Cramer-Rao bound Bootstrap sample duration is 48.8 m

Unresolved multipath error at the receiver 0-100 m (uniform dist.)

Assumed that TOA detector will detect the earliest path

Assumed that ambiguity function based joint time-frequency estimation

Receiver clock offset is set to the distance of the nearest tower

Assumed that receiver clock will synchronize with the strongest signal

A Typical Simulation Run

TOA estimation error: 4.1 m, -3.2 m, -2.4 m, -3.5 m, multipath error: 13.6 m, 86.9 m, 58.0 m, 55.0 m, clock offset: 25495.9 m

true (x, y, t): x = -25000.0 m, y = -5000.0 m, t = 25495.9 mestimated (x, y, t): x = -24989.9 m, y = -5015.7 m, t = 25549.6 m

estimation error: x = -10.1 m, y = 15.7 m, t = -53.7 mestimation error (distance): 18.7 m

A Typical Simulation Run

Coverage Planning Factors

Parameter	BPS Value	TV Value	Unit
System Bandwidth	6	6	MHz
Required C/(I+N)	-5	15	dB
Thermal Noise (kTB)	-106.2	-106.2	dBm
Frequency of Operation	539	615	MHz
Antenna Gain	0	12.15	dBi
Antenna Factor	-129.6	-132.95	dBm-dBµV/m
Noise Figure	6	7	dB
Line Loss	0	4	dB
Required Field Strength	24.4	40.8	dBµV/m
Required Power at RX	-109.05	-84.85	dBm
RX Antenna height, AGL	1.5	10	m
Location, Time Variability	50%, 50%	50%, 90%	_

Coverage Definition (Planning Factors)

Nominal Coverage Thresh	old, dBµ'	V/m
Band	TV	<u>BPS</u>
VHF-L (54-88 MHz)	28	6.6
VHF-H (174-213 MHz)	36	15.6
UHF (470-608 MHz)	41	24.4

Neighbor Measurement (bps_info) Message

Syntax	No. of bits	Format
bps_info(){		
message_length	16	unsigned integer
version	8	unsigned integer
timing_source_info(){		
sync_hierarchy	7	unsigned integer
num_independent_sources	6	unsigned integer
for (i=0;i< num_independent_sources;i++){		
source_type_list	4	unsigned integer
}		
expected_accuracy	16	unsigned integer
source_used	4	unsigned integer
}		
self_measurement_info(){		
call_sign	42	array of 7 6-bit unsigned integers
tx_id	13	unsigned integer
tx_freq	32	32-bit floating point
geodetic_lat	64	64-bit double precision
geodetic_lon	64	64-bit double precision
geodetic_height	64	64-bit double precision
radiated_power	32	32-bit floating point
for (i=0;i<36;i++){		
antenna_pattern_relative_field	252	array of 36 7-bit unsigned integers
}		
max_gain_direction	10	unsigned integer
prev_bootstrap_time_sec	32	unsigned integer
prev_bootstrap_time_msec	10	unsigned integer
prev_bootstrap_time_usec	10	unsigned integer
prev_bootstrap_time_nsec	10	unsigned integer
prev_bootstrap_time_error_nsec	16	signed integer
}		

leap_seconds	8	unsigned integer
num neighbors	6	unsigned integer
for (i=0:i <num i++){<="" neighbors:="" td=""><td>Ů</td><td></td></num>	Ů	
neighbor measurement info(){		
call sign	42	array of 7 6-bit unsigned integers
tx id	13	unsigned integer
tx_freq	32	32-bit floating point
geodetic_lat	64	64-bit double precision
geodetic_lon	64	64-bit double precision
geodetic_height	64	64-bit double precision
radiated_power	32	32-bit floating point
for (i=0;i<36;i++){		
antenna_pattern_relative_field	252	array of 36 7-bit unsigned integers
}		
max_gain_direction	10	unsigned integer
reported_bootstrap_time_sec	32	unsigned integer
reported_bootstrap_time_msec	10	unsigned integer
reported_bootstrap_time_usec	10	unsigned integer
reported_bootstrap_time_nsec	10	unsigned integer
bootstrap_toa_offset	32	signed integer
prev_bootstrap_time_sec	32	unsigned integer
prev_bootstrap_time_msec	10	unsigned integer
prev_bootstrap_time_usec	10	unsigned integer
prev_bootstrap_time_nsec	10	unsigned integer
prev_bootstrap_time_error_nsec	16	signed integer
}		
}	-	
reserved_bits	as	
	needed	Contraction of The

34

Preamble Time Adjustments ල එ ≡

← → C

ALLEI I

Lessons Learned from Prototype

Proved that Tx-side timestamping can be done without disrupting existing transmission chain

Demonstrated BPS compliance with ATSC 3.0 standard

Achieved 300 ns timing accuracy in first implementation

Developed bps_info message structure that could be standardized

Discovered technology gaps of existing off-the-shelf equipment

Identified areas of improvement for future work

- Mondal, T., Weller, R., and Matheny, S., "Broadcast Positioning System (BPS) Using ATSC 3.0," Proceedings of the 2021 NAB Broadcast Engineering and Information Technology (BEIT) Conference
 - <u>https://nabpilot.org/product/broadcast-positioning-system-bps-using-atsc-3-0-2/</u>
- Diamond, P., Mondal, T., Weller, R., and Hansen, A., "Delivering Traceable Reference Time for ATSC 3.0-based Broadcast Positioning System (BPS)," *Proceedings of the 2023 NAB Broadcast Engineering and Information Technology (BEIT) Conference*
 - <u>https://nabpilot.org/product/delivering-traceable-reference-time-for-atsc-3-0-based-broadcast-positioning-system-bps/</u>
- Corl, M., Anishchenko, V., and Mondal, T., "BPS ATSC 3.0 Broadcast Emission Time Stabilization System Proof-of-concept," *Proceedings of the 2023 NAB Broadcast Engineering and Information Technology (BEIT) Conference*
 - <u>https://nabpilot.org/product/bps-atsc-3-0-broadcast-emission-time-stabilization-system-proof-of-concept/</u>