

Civil GPS Service Interface Committee Timing Subcommittee

Co-Chairs:

Dr. Stefania Römisch – NIST Time and Frequency Division

Dr. Lin Yi – NASA Jet Propulsion Lab/Caltech

Timing Subcommittee

A forum for users of GPS timing applications.

- Time Generation: Coordinated Universal Time
- Time Dissemination: Telecommunications, financial markets and power grid among others
- As a research and comparison tool: Earth observations, fundamental physics, support for space missions, etc.

Highlights of this year's session

From timing laboratories:

USNO

- 2 continuously-running Rb fountains at AMC in Colorado Springs, CO in addition to the 4 in Washington, DC;
- Continue to compute the offset UTC(USNO)-GPS System Time and deliver it to USAF
- Develop monitoring guidelines for Subframe 4, Page 18 (time and frequency offsets from GPS system Time to predicted UTC(USNO)
- Absolute calibration of GPS receivers to monitor UTC(USNO) as provided by GPS

NIST

- Continued monitoring of UTC(USNO)-UTC(NIST), biannual calibrations of the TWSTFT and GPS link;
- Frequency and time dissemination services to all sectors of society
- DHS-funded work, in collaboration with MITRE towards a resilient timing infrastructure

Highlights of this year's session

From JPL

- Timing in deep space communications and navigation
 - Deep Space Network Frequency and Timing System
 - JPL-Frequency Standards Test Laboratory
- Advanced atomic clocks for space applications
 - Deep Space Atomic Clock (a NASA technology demonstration mission)
 - Ultra-stable Hg+ clock for ground timing keeping (ESA/NASA-ACES)
 - Miniaturized and low power Hg+ clock (DARPA-ACES)

From MITRE

- Development of approaches, technologies and test techniques to increase resilience for PNT
- Near-term improved robustness for timing receivers (blocking antennas, spoof-detection algorithms)
- Advanced Navigation and Timing Strategy for enhanced Robustness and Resilience (ANTSERR): development of a reference architecture
- GNSS Test Architecture (GNSSTA): SDR framework for experimenting with PVT receiver technology

Highlights of this year's session

From NASA-Goddard Space Flight Center

- Space use of GPS for timing and navigation
 - Terrestrial Service Volume (<3000km) comparable to Earth use
 - Space Service Volume (3000-36000km) higher Doppler and partial obscuration
 - Beyond SSV (>36000km) mainly spillover and side lobes, weak signals
- Magnetosphere Multi-Scale mission validated GPS timing and navigation beyond SSV.

Earth rotation prediction at USNO

- UT1 is the true measure of the Earth's rotation angle
- GPS data can help measure UT1
- Improved UT1 prediction with Kalman filter using inputs from VLBI, and Atmospheric Angular Momentum predictions.