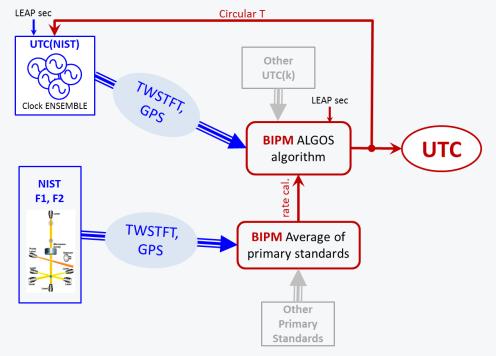

Report on GPS activities 2018

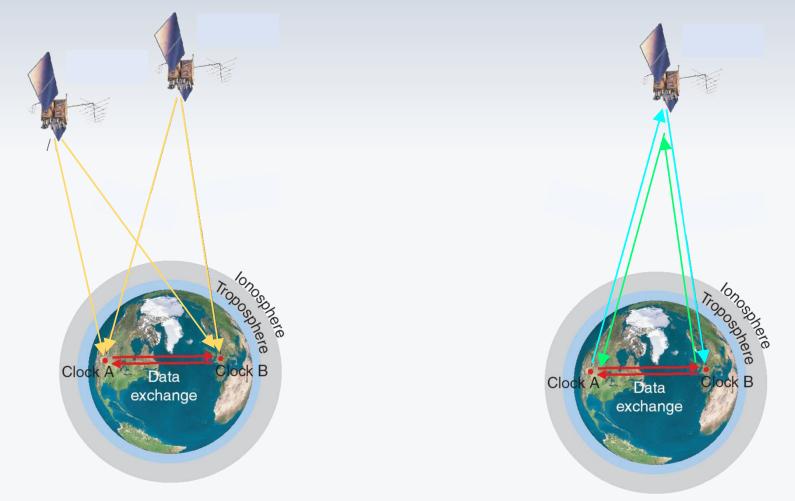
Stefania Römisch

OUTLINE

GPS Time Transfer for Coordinated Universal Time (UTC)

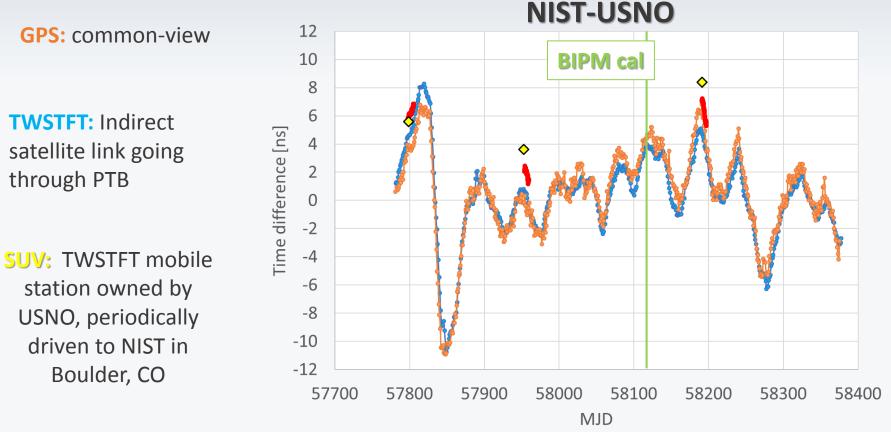

Time **Dissemination** and Services via GPS

Science: comparing clocks and supporting ACES

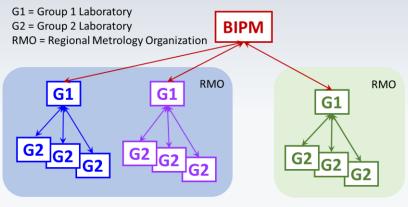

A resilient timing infrastructure

Coordinated Universal Time (**UTC**) is the official world time scale.

UTC is computed by the International Bureau of Weights and Measures (**BIPM**) in France.


- UTC(NIST) is the local realization of UTC. The UTC(NIST) time scale consists of an ensemble of hydrogen masers and cesium clocks.
- NIST maintains and operates UTC(NIST) and the U. S. Primary Frequency Standards, cesium fountain devices F1 and F2.
- The time transfer links between NIST and BIPM are based on
 - Two-Way Satellite Time and Frequency Transfer (TWSTFT) measurements utilizing geostationary satellites.
 - GPS common-view measurements.

GPS Common-view


Two-Way Satellite Time and Frequency Transfer

USNO shares with NIST the responsibility of maintaining accurate realizations of UTC in the US

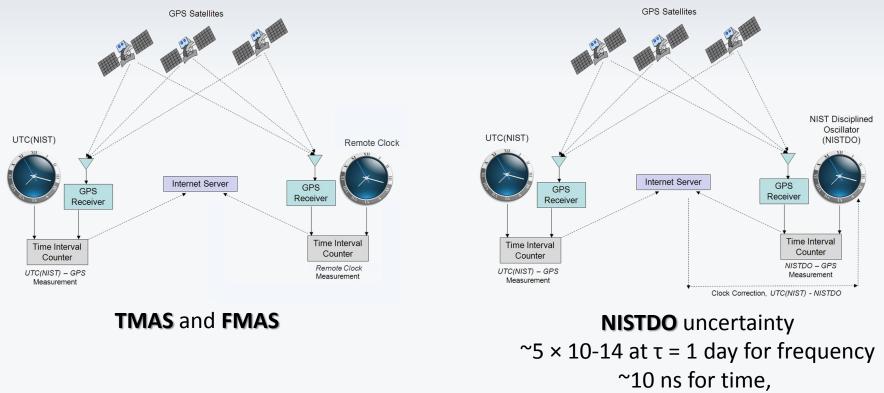
GPS with SUV cal: common-view calibration

BIPM issued updated Calibration Guidelines for all laboratories contributing to UTC

- NIST (Boulder, CO, USA)
- CNM (Queretaro, MEXICO)
- CNMP(PANAMA)
- INTI (Buenos Aires, ARGENTINA)
- INXE (Rio de Janeiro, BRAZIL)
- NRC (Ottawa, CANADA)
- ONRJ (Rio de Janeiro, BRAZIL)
- INM (Bogota, COLOMBIA)
- INCP (Lima, PERU)

USNO (Washington, DC, USA)

- APL (Laurel, MD, USA)
- IGNA (Buenos Aires, ARGENTINA)
- NRL (Washington, DC, USA)
- ONBA (Buenos Aires, ARGENTINA)

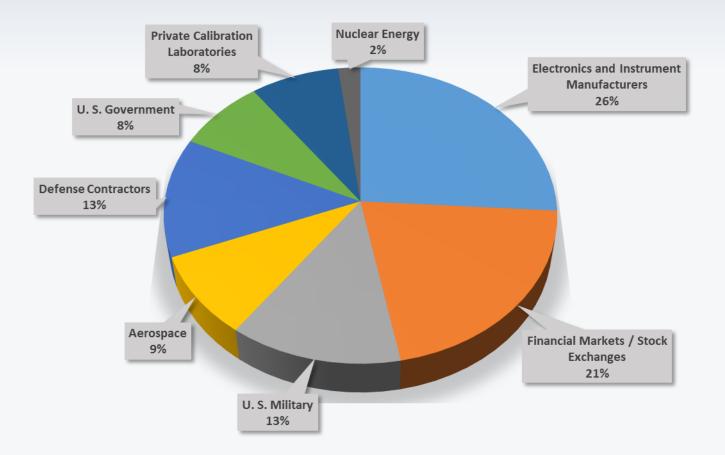

TMAS FMAS NISTDO

- NIST provides common-view GPS measurement systems to its remote customers, allowing them to compare their clocks to UTC(NIST) by using the GPS.
- The common-view data is processed in real-time and shows the time or frequency difference between UTC(NIST) and the customer's clock.

FMAS: reports frequency uncertainty to the customerTMAS: reports time uncertainty to the customerNISTDO: locks the customer's clock (rubidium or cesium) to the UTC(NIST)

Customers can then show traceability to the International System (SI) of units through NIST.

GPS Common-view


(k = 2)

Map of Common-View GPS Systems Maintained by NIST

(78 total systems deployed, 53 at customer sites and 25 in SIM Time Network)

NIST remote time and frequency dissemination Customers by sector

International GNSS Service (IGS) Tracking Network

Receiver NIST is an active station https://igscb.jpl.nasa.gov/network/site/nist.html

NIST data archives:

- One-way GPS data vs UTC(NIST) <u>http://www.nist.gov/pml/div688/grp40/gpsarchive.cfm</u>
- Common-view UTC(USNO)-UTC(NIST) <u>http://www.nist.gov/pml/div688/grp50/nistusno.cfm</u>
- Monthly Bulletins <u>http://www.nist.gov/pml/div688/grp50/TimeScales.cfm</u>
- SIM Time and Frequency Metrology Working Group http://tf.nist.gov/sim

The acknowledgment of vulnerabilities in the GPS signals has spurred a lot of activities on both the user side (power grid, telecom and finance) and the provider side (GPS receivers manufacturers and timing providers).

April 17th, 2018

Booze | Allen | Hamilton Washington, D.C.

Assured Access to Accurate Time Workshop A Comprehensive View of Timing Solutions and Interoperability Issues June 22, 2018 | San Jose, California

June 22nd, 2018

Co-located with WSTS San Jose, CA

GNSS Stationary Timing Receiver Resilience Workshop

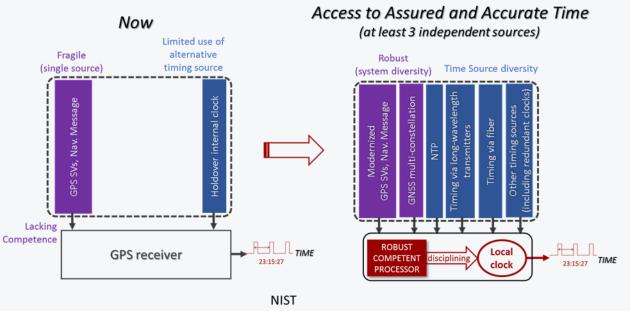
To the US Government:

- 1. Establish Assured PNT Program for America's CI
- 2. Monitor spectrum (see EU Strike3), publish reports and recommendations
- 3. Promote development & use of PNT maturity model by industries/sectors
- 4. Enforce against violations of the spectrum: jamming and spoofing

To Standards Organizations:

- 1. Define resilience (metrics and language) and how to test for it
- 2. Define standard way of detecting threats, validating receivers resilience
- 3. Promote the development of a procurement language relating to resilience

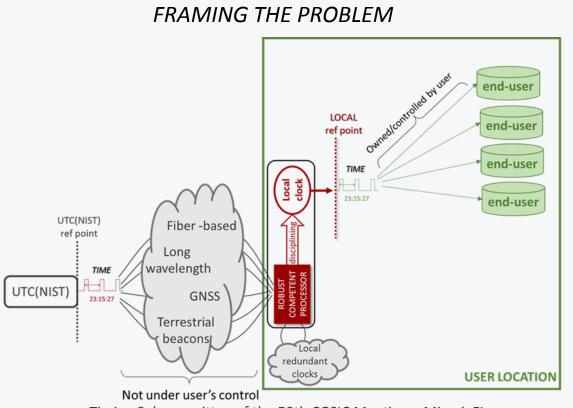
To User Industries:


- 1. Adopt an Organizational Maturity Model: identify system's dependence on GNSS and create case studies to illustrate needs.
- 2. Adopt a common procurement language
- 3. Monitor for problems and impacts and report, leveraging user base in collaboration with Government to support spectrum protection
- 4. Use alternative timing sources

Assured Access to Accurate Time Workshop

- Provide a common venue for US Government, users and time providers
 - Define attributes and metrics for assured and accurate time

FRAMING THE PROBLEM



NIST The MITRE Corporation

Assured Access to Accurate Time Workshop

- Provide a common venue for US Government, users and time providers
 - Define attributes and metrics for assured and accurate time

Assured Access to Accurate Time Workshop

Accuracy

- determined by calibration to a known standard
- traditional statistical estimator may not be appropriate

Stability

- Statistical noise
- Long-term drifts (how often to calibrate)

Traceability

Assuredness

- Reliability
- Signal integrity
- Confidence (flag or statistical)

Availability

- "No signal is better than wrong signal"
- Geographical
- For both time delivered to user and to competent processor

Continuity

- Temporal availability (probability of delivery of assured) signal over time)
- Holdover

Processor's health

- Exceeds RAIM
- Number of timing inputs
 - >3 for diagnostic
- Degrees of diversity of inputs
 - All UTC, different deliveries

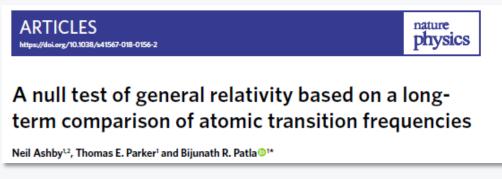
Use of corollary information

- Well-surveyed antenna
- Frequent checks on frames
- Doppler information
- Etc.
- COMPETENT PROCESSOR Graceful degradation
 - Quantify the degradation as one or more inputs are compromised
 - Time to first time/recovery

Next steps:

- Continue as working group
- Quantify the attributes to derive metrics and performance bands
- Define reference architectures to be characterized
- Develop testing procedures and protocols

Assured Access to Accurate Time Workshop II


January 28th, 2019 Co-located with PTTI Reston, VA

SCIENCE

Atomic Clock Ensemble in Space (ACES) mission support Accurate position of the International Space Station (ISS) to allow for the best frequency transfer between ground stations and ISS.

Test of Local Position Invariance principle

Using long-term (14 years) comparison of remote clocks (H masers and Cs fountains), via UTC. x5 better than previous effort in 2007.

The next improvement will use optical clocks

PEOPLE

Atomic Standards

S. Römisch – Leader T. Parker B. Patla V. Zhang

Time and Frequency Services

J. Lowe – Leader M. Deutch, WWV/WWVB M. Lombardi A. Novick D. Okayama, WWVH

Primary Frequency Standards

- S. Jefferts Leader
- A. Banducci
- A. Radnaev
- N. Ashby
- J. Shirley

Network Synchronization

- J. Levine Leader
- J. Yao

THANK YOU!