Enhanced Loran (eLoran) An Independent Perspective

Presentation to the
Civil GPS Service Interface Committee

James T. Doherty
Institute for Defense Analyses
22 April 2008

What This Is Not & What It Is

Not

- The Independent Assessment Team (IAT) report
- Which had been used to inform the US decision on eLoran

• Is

- The author's perspectives on eLoran
- Request for feedback and data as we move forward

Similar brief given

- May 2007 Annual Assembly Meeting & Conference of the Radio Technical Commission for Maritime Services (RTCM)
 - RTCM SC-127 on eLoran subsequently initiated
- September 2007 International Association of Lighthouse Authorities (IALA) Ad Hoc Meeting on Loran/Chayka
- October 2007 Royal Institute of Navigation NAV07 meeting

Why an IAT?

- Panel of experts <u>Independent</u> Assessment Team
 - From government, industry, academia, etc.
 - With relevant experience in senior decision-making positions
- View issues from the <u>national</u> perspective
 - Not agency or user group specific
- Report directly to senior sponsor(s)
 - Under Secretary & Deputy Under Secretary
- Not a new study but a review of prior studies
 - Vulnerability assessments
 - Cost/benefit analyses
 - Technical studies and data collection
 - Stakeholder perspectives

How Did It Work?

- Initial assessment: August thru December 2006
- Document review
 - About 40 reports, comprising 1500-2000 pages
- Three 2-day meetings monthly intervals
 - Stakeholders (agencies & user communities)
 - Investigators, study teams, & data collectors
 - Industry signal provider & user equipment
 - Service providers US & international
- Extensive "deep dive" into cost data
 - Reconciliation of differences & "over bound"
- Consensus conclusions & recommendations
 - Report to sponsors & follow up with others

eLoran Defined

- eLoran 21st Century low-frequency (100 KHz) position, navigation, time (PNT) service
 - Latest evolution of LOng RAnge Navigation (LORAN) concept
 - Internationally standardized
- eLoran meets PNT performance requirements, including
 - Accuracy, availability, integrity, and continuity

for applications of

- Aviation users, including non-precision approach
- Maritime users, including harbor entrance and approach
- Land mobile users, and
- Precise time and frequency users
- eLoran is an independent dissimilar complement to GNSS
 - Enables diverse user communities to continue operations when GNSS services are disrupted
 - Retains safety, security, environmental, and economic benefits of critical applications

eLoran Is NOT Loran-C (but backwards compatible)

Upgraded infrastructure

- Solid state transmitters
- Modern "ensembled" time & frequency systems
- Uninterruptible power supplies
- Differential monitor network

Modernized operations concepts

- Data messaging channel differential signals, etc.
- Time of transmission control independent of GPS/GNSS
- "All-in-view" signal tracking

New user equipment – eLoran & GPS/GNSS

- Digital signal processing interoperable with GPS/GNSS
- Incorporates differential signals & survey data
- H-field antennas eliminates "P-static"

eLoran as Backup (& Extension) of GPS

- GPS-based PNT is ubiquitous, economical, & dependency is growing in applications providing
 - Safety of life, economic security, quality of life
- GPS (& in future GNSS) is vulnerable to disruption
 - Interference, atmospherics, noise floor, obstruction (urban canyons, foliage, et al), etc.
- eLoran as backup (& extension) system
 - Critical PNT performance requirements
 - Interoperable with & independent of GPS/GNSS
 - Different failure modes system & propagation
 - Seamless operation for backup & also extends to GPSchallenged areas

eLoran Pacing Requirements

Studies & data demonstrated eLoran meets

- Harbor entrance & approach maritime navigation
 - 10-20 meter accuracy
 - Differential monitor sites & stored survey data
- Aviation non-precision approach
 - Required navigation performance 0.3 nautical mile (RNP 0.3) accuracy with
 - Aviation quality integrity signal
- Stratum 1 frequency stability
 - Also met by Loran-C
- 50 ns time accuracy
 - Traceable to Universal Coordinated Time (UTC)
 - Differential time monitor sites

eLoran User Equipment

- Nascent UE industry
- Prototypes exist
 - Integrated eLoran-GPS receiver designs
 - No one envisions standalone eLoran design
 - Common user interface
 - Compact H-field antenna, generally integrated with GPS
 - Limited production reasonably available
 - Potential for significant cost reduction
- Market surveys
 - Classic & new applications
 - "Reliable" GPS
 - Next equipment upgrade cycle

Way Ahead & Your Feedback

- Need for standards?
 - Must stop the engineering "what ifs"
 - Need a "Version 1.0" standard for eLoran
 - Signals in space
 - UE performance & testing
 - What is deferred until later Versions?
- What is the upgrade path? For example,
 - For how long should eLoran be backwards compatible for legacy Loran-C users?
 - Should the operating concepts be upgraded (e.g., single-rate all transmitters); when?
- What else is needed for the users to equip?
 - Are regulations or incentives needed?
 - For all or just some user groups?