PROPOSED INTERFACE REVISION NOTICE (PIRN) Note: This Cover Page is not intended for signature. It is to be used during the document update (pre-ICWG) process. Affected ICD/IS: **PIRN Number:** IS-GPS-705 Rev D PIRN-IS-705D-006 PIRN Date: **Authority:** RFC-00354 27-APR-2017 **CLASSIFIED BY:**

DECLASSIFY ON:

Document Title: NAVSTAR GPS Space Segment/User Segment L5 Interfaces

Reason For Change (Driver):

The linkage between different timing system is not properly captured in the current technical baseline. Using the existing IS-GPS-200, IS-GPS-705 & ICD-GPS-700 documentation, MNAV and CNAV users will calculate the wrong UT1 time immediately following a leap second change. As a result, user application that require high precision pointing will cause the pointing to be in error. Possible users may include optical telescope, or any military system that requires high precision pointing.

Description of Change:

The proposed changes to the impacted technical baseline documents would correctly calculate UT1 during a leap second transition.

(this RFC will also address an ICD-GPS-700 editorial change from RFC-329)

Prepared By: Perry Chang Checked By: Amit Patel

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution Is Unlimited

IS705-324:

Section Number:

20.3.3.5.1.1-4

WAS:

Description
Time at time t x-axis y-axis
,

t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light).

Redlines:

Table 20-VIII. Application of EOP Parameters		
Element/Equation	Description	
$UT1 = t_{UTC-EOP} + \Delta UT1 + \Delta UT1 (t - t_{EOP})$	Compute Universal Time at time t	
$x_p = PM_X + PMX(t - t_{EOP})$	Polar Motion in the x-axis	
$y_{p} = PM_{Y} + PMY (t - t_{EOP})$	Polar Motion in the y-axis	

t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light).

IS:

Table 20-VIII. Application of EOP Parameters		
Element/Equation	Description	
$UT1 = t_{UTC-EOP} + \Delta UT1 + \Delta UT1 (t - t_{EOP})$	Compute Universal Time at time t	
$x_p = PM_X + PM\overset{\bullet}{X} (t - t_{EOP})$	Polar Motion in the x-axis	
$y_{p} = PM_{Y} + PMY (t - t_{EOP})$	Polar Motion in the y-axis	

t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light).

Rationale:

-Replace "UTC" with "tUTC-EOP" in the first equation. Rationale: Define a specific variable for use in this section.

-Also italicized equation reverted back to standard text format

IS705-1525:

Insertion after object IS705-324

Section Number:

20.3.3.5.1.2

WAS:

N/A

Redlines:

When implementing the first equation in Table 20-VIII, tUTC-EOP shall be derived from data contained in message type 33 (see Section 20.3.3.6). For a given upload, the Control Segment shall ensure the Δ UT1 and Δ UT1(dot) values in message type 32 shall be consistent with the UTC parameters (A0-n, A1-n, A2-n, and Δ tLS) in the message type 33 and that the tEOP in message type 32 shall be identical to the tot in message type 33.

When calculating tUTC-EOP for Table 20-VIII the user shall only use data from a message type 33 with the same tot as the tEOP of the message type 32 containing Δ UT1 and Δ UT1(dot). The following definition of tUTC-EOP shall be used.

 $\underline{tUTC\text{-}EOP} = (t - \Delta tUTC\text{-}EOP) [modulo 86400 seconds]$

where

 $\Delta tUTC$ -EOP = ΔtLS + A0-n + A1-n (t-tot + 64800(WN-WNot)) + A2-n (t-tot+604800 (WN-WNot))2

To avoid discontinuities in UT1 across leap seconds, the value of ΔtLS must be used in the calculation of tUTC-EOP regardless of whether a leap second has occurred. This accounts for the continuous nature of UT1 until a new upload after the leap second provides an update value for $\Delta UT1$ that is consistent with the new ΔtLS ."

IS:

When implementing the first equation in Table 20-VIII, $t_{UTC\text{-}EOP}$ shall be derived from data contained in message type 33 (see Section 20.3.3.6). For a given upload, the Control Segment shall ensure the $\Delta UT1$ and $\Delta UT1(dot)$ values in message type 32 shall be consistent with the UTC parameters ($A_{0\text{-}n}$, $A_{1\text{-}n}$, $A_{2\text{-}n}$, and Δt_{LS}) in the message type 33 and that the t_{EOP} in message type 32 shall be identical to the t_{ot} in message type 33.

When calculating $t_{UTC\text{-}EOP}$ for Table 20-VIII the user shall only use data from a message type 33 with the same t_{ot} as the t_{EOP} of the message type 32 containing $\Delta UT1$ and $\Delta UT1(dot)$. The following definition of $t_{UTC\text{-}EOP}$ shall be used.

 $t_{\text{UTC-EOP}} = (t - \Delta t_{\text{UTC-EOP}}) \text{ [modulo 86400 seconds]}$

where

 $\Delta t_{\text{UTC-EOP}} = \Delta t_{\text{LS}} + A_{0-n} + A_{1-n} \left(t - t_{\text{ot}} + 64800 (\text{WN-WN}_{\text{ot}}) \right) + A_{2-n} \left(t - t_{\text{ot}} + 604800 (\text{WN-WN}_{\text{ot}}) \right)^2$

To avoid discontinuities in UT1 across leap seconds, the value of Δt_{LS} must be used in the calculation of $t_{UTC\text{-}EOP}$ regardless of whether a leap second has occurred. This accounts for the continuous nature of UT1 until a new upload after the leap second provides an update value for $\Delta UT1$ that is consistent with the new Δt_{LS} ."

Rationale:

This change explicitly specifies the relationship between tot and tEOP and requires the user to use ΔtLS in the tUTC calculation all cases. It does so in a manner that explicitly warns the user of the possible leap second problem. It also adds a control segment requirement.