INTERFACE REVISION NOTICE (IRN)

Note: This Summary Signature Page is to be used after all signatories have signed separate Signature Pages.

Affected IS: IS-GPS-705 Rev D	IRN Number IRN-IS-705D-006	Date: 06-SEP-2017
Authority: RFC-00354	PIRN Number PIRN-IS-705D-006	$\begin{gathered} \hline \text { Date: } \\ \text { 26-APR-2017 } \end{gathered}$
CLASSIFIED BY: N/A DECLASSIFY ON: N/A		
Document Title: NAVSTAR GPS Space Segment/User Segment L5 Interfaces		
Reason For Change (Driver): The linkage between different timing systems is not properly captured in the current technical baseline. Using the existing IS-GPS-200 \& IS-GPS-705 documentation, CNAV users will calculate the wrong Universal Time 1 (UT1) immediately following a leap second change. As a result, user applications that require high precision pointing will cause the pointing to be in error. Possible users may include any systems that require high precision pointing.		
Description of Change: The proposed changes to the impacted technical baseline documents would correctly calculate UT1 during a leap second transition.		
Prepared By: Perry Chang	Checked By: Huey Nguyenhuu	
AUTHORIZED SIGNATURES	REPRESENTING	DATE
	GPS Directorate Space \& Missile Systems Center (SMC) - LAAFB	

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution Is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND	Interface Control Contractor:
NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE	Engility (GPS SE\&I)
TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL	200 N. Sepulveda Blvd., Suite 1800
PARTIES AFFECTED.	El Segundo, CA 90245
	CODE IDENT 66RP1

Note: Repeat this Signature Page for each document signatory.
\(\left.$$
\begin{array}{|l|l|}\hline \hline \begin{array}{l}\text { Affected IS: } \\
\text { IS-GPS-705 Rev D }\end{array} & \begin{array}{l}\text { IRN Number } \\
\text { IRN-IS-705D-006 }\end{array} \\
\hline \begin{array}{l}\text { Authority: } \\
\text { RFC-00354 }\end{array} & \begin{array}{l}\text { PIRN Number } \\
\text { PIRN-IS-705D-006 }\end{array} \\
\hline \hline \begin{array}{l}\text { CLASSIFIED BY: } \\
\text { DECLASSIFY ON: N/A }\end{array}
$$

\hline Document Title: NAVSTAR GPS Space Segment/User Segment L5 Interfaces

\hline 26-APR-2017\end{array}\right]\)| Date: |
| :--- |
| Reason For Change (Driver):
 The linkage between different timing systems is not properly captured in the current technical
 baseline. Using the existing IS-GPS-200 \& IS-GPS-705 documentation, CNAV users will calculate
 the wrong Universal Time 1 (UT1) immediately following a leap second change. As a result, user
 applications that require high precision pointing will cause the pointing to be in error. Possible users
 may include any systems that require high precision pointing. |

Description of Change:

The proposed changes to the impacted technical baseline documents would correctly calculate UT1 during a leap second transition.

APPROVED:

```
With Comments: Yes }\square\mathrm{ No
With Exceptions: Yes }\square\mathrm{ No
```

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution Is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND	Interface Control Contractor:
NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER	Engility (GPS SE\&l)
THE TERMS OF ANY CONTRACT OR PURCHASE ORDER	200 N. Sepulveda Blvd., Suite 1800
BETWEEN ALL PARTIES AFFECTED.	El Segundo, CA 90245
	CODE IDENT 66RP1

Section Number :

20.3.3.5.1.1-3

WAS :

Table 20-VII. Earth Orientation Parameters					
Parameter Symbol	Parameter Description	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
$\mathrm{t}_{\text {EOP }}$	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_X ${ }^{\dagger}$	X-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_X	X-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
PM_Y ${ }^{\dagger}$	Y-Axis Polar Motion Value at Reference Time.	21^{*}	2^{-20}		arc-seconds
PM_Y	Y-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
$\Delta \mathrm{UT} 1 \mathrm{\#}$	UT1-UTC Difference at Reference Time.	31*	2^{-24}		seconds
$\Delta \mathrm{UT} 1{ }^{\text {T }}$	Rate of UT1-UTC Difference at Reference Time	19*	2^{-25}		seconds/day
* Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB; ** See Figure 20-5 for complete bit allocation in message type 32;					
*** Unless oth	ise indicated in this column, scale factor.	lid range	the max	range attaina	with indicated bit
	e predicted angular displacem xis of the reference ellipsoid a	t of inst ng Green	aneous ich meri	tial Ephemeri	ole with respect to
\dagger	e predicted angular displacem xis of the reference ellipsoid	t of inst a line dir	ted 90°	tial Ephemeri of Greenwich	ole with respect to ridian.
iti With zonal	des restored.				

Redlines :

IS705-324 :

Section Number :

20.3.3.5.1.1-4

WAS :

Table 20-VIII. Application of EOP Parameters	
Element/Equation	Description
$U T 1=U T C+\Delta U T 1+\Delta \dot{U T} 1\left(t-t_{E O P}\right)$	Compute Universal Time at time t
$x_{p}=P M_{-} X+P M \dot{X}\left(t-t_{E O P}\right)$	Polar Motion in the x-axis
$y_{p}=P M_{-} Y+P M \dot{Y}\left(t-t_{E O P}\right)$	Polar Motion in the y-axis
t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light).	

Redlines :

Table 20-VIII. Application of EOP Parameters	
Element/Equation	Description
$\begin{aligned} & \mathrm{UT1}=\mathrm{t}_{\mathrm{UTC} _\mathrm{EOP}}+\Delta \mathrm{UT1}+\Delta \dot{\mathrm{U}} \mathrm{~T} 1\left(\mathrm{t}-\mathrm{t}_{\mathrm{EOP}}\right. \\ & \left.+604800\left(\mathrm{WN}-\mathrm{WN}_{\mathrm{ot}}\right)\right) \\ & x_{p}-P M _Y+P M \dot{X}\left(t-t_{E O P}\right) * \\ & \mathrm{x}_{\mathrm{p}}=\mathrm{PM}-\mathrm{X}+\mathrm{PM} \dot{\mathrm{X}}\left(\mathrm{t}-\mathrm{t}_{\mathrm{EOP}}\right. \\ & \left.+604800\left(\mathrm{WN}-\mathrm{WN}_{\mathrm{ot}}\right)\right) \\ & y_{p}-P M _Y+P M \dot{\mathrm{Y}}\left(t-t_{\mathrm{EOP}}\right) * \\ & \mathrm{y}_{\mathrm{p}}=\mathrm{PM}_{-} \mathrm{Y}+\mathrm{PM} \mathrm{Y}\left(\mathrm{t}-\mathrm{t}_{\mathrm{EOP}}\right. \\ & \left.+604800\left(\mathrm{WN}-\mathrm{WN}_{\mathrm{ot}}\right)\right) \end{aligned}$	Compute Universal Time at time t Polar Motion in the x -axis Polar Motion in the y-axis
GPS system time at time of transmission (t) shall be in seconds relative to end/start of week tis GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light).	

IS:

Table 20-VIII. Application of EOP Parameters	
Element/Equation	Description
$\begin{aligned} & \mathrm{UT} 1=\mathrm{t}_{\text {UTC_EOP }}+\Delta \mathrm{UT} 1+\Delta \dot{\mathrm{U} T} 1\left(\mathrm{t}-\mathrm{t}_{\text {EOP }}\right. \\ & \left.+604800\left(\mathrm{WN}-\mathrm{WN}_{\mathrm{ot}}\right)\right) \\ & \mathrm{x}_{\mathrm{p}}=\text { PM_X }+ \text { PM } \dot{\mathrm{X}}\left(\mathrm{t}-\mathrm{t}_{\text {EOP }}\right. \\ & \left.+604800\left(\mathrm{WN}-\mathrm{WN}_{\mathrm{ot}}\right)\right) \\ & \mathrm{y}_{\mathrm{p}}=\text { PM_Y }+ \text { PM } \dot{\mathrm{Y}}\left(\mathrm{t}-\mathrm{t}_{\text {EOP }}\right. \\ & \left.+604800\left(\mathrm{WN}-\mathrm{WN}_{\mathrm{ot}}\right)\right) \end{aligned}$	Compute Universal Time at time t Polar Motion in the x -axis Polar Motion in the y-axis
GPS system time at time of transmission (t) shall be in seconds relative to end/start of week	

IS705-1526 :

Insertion after object IS705-324

Section Number :

20.3.3.5.1.1-5

WAS :
N/A

Redlines:

When implementing the first equation in Table 20-VIII, WN-ot and tUTC EOP is derived from data contained in message type 33 (see Section 20.3.3.6). For a given upload, the Control Segment shall ensure the $\Delta U T 1$ and $\Delta U T 1$ values in message type 32 are consistent with the UTC parameters ($W N-o t, A 0-n, A 1-n, A 2-n$, and $\Delta t L S$) in the message type 33 , and the tEOP in message type 32 is identical to the tot in message type 33.

IS :
When implementing the first equation in Table $20-\mathrm{VIII}, \mathrm{WN}_{- \text {ot }}$ and tutc_eop is derived from data contained in message type 33 (see Section 20.3.3.6). For a given upload, the Control Segment shall ensure the $\Delta U T 1$ and $\Delta U \dot{T} 1$ values in message type 32 are consistent with the UTC parameters (WN -ot, $\mathrm{A}_{0-n}, \mathrm{~A}_{1-n}, \mathrm{~A}_{2-n}$, and $\Delta \mathrm{t}_{\mathrm{LS}}$) in the message type 33 , and the $\mathrm{t}_{\text {Eop }}$ in message type 32 is identical to the $t_{o t}$ in message type 33.

IS705-1529 :

Insertion after object IS705-1526

Section Number :

20.3.3.5.1.1-6

WAS :
N/A

Redlines :

When calculating tUTC EOP for Table 20-VIII the user shall only use data from a message type 33 with the same tot as the tEOP of the message type 32 containing $\triangle U T 1$ and $\Delta U ் T 1$.

IS:
When calculating tutc_eop for Table 20-VIII the user shall only use data from a message type 33 with the same $t_{\text {ot }}$ as the $\mathrm{t}_{\text {EOP }}$ of the message type 32 containing $\Delta \mathrm{UT} 1$ and $\Delta U \dot{T} 1$.

IS705-1530 :

Insertion after object IS705-1529

Section Number :

20.3.3.5.1.1-7

WAS :
N/A

Redlines :

The following definition of tUTC EOP shall be used.
tUTC EOP $=(t-\Delta t U T C$ EOP) [modulo 86400 seconds]
where
$\Delta t U T C$ EOP $=\Delta t L S+A 0-n+A 1-n(t-t o t+604800(W N-W N o t))+A 2-n(t-t o t+604800(W N-W N o t)) 2$
IS:
The following definition of tutc_eop shall be used.
tutc_eop $=(\mathrm{t}-\Delta$ tutc_eop [modulo 86400 seconds]
where
$\Delta t_{\text {UTC_EOP }}=\Delta t_{L S}+A_{0-n}+A_{1-n}\left(t-t_{o t}+604800\left(W N-W N_{o t}\right)\right)+A_{2-n}\left(t-t_{o t}+604800\left(W N-W N_{o t}\right)\right)^{2}$

IS705-1531 :

Insertion after object IS705-1530

Section Number :

20.3.3.5.1.1-8

WAS :
N/A
Redlines:
To avoid discontinuities in UT1 across leap seconds, the value of $\Delta t L S$ must be used in the calculation of tUTC EOP regardless of whether a leap second has occurred. This accounts for the continuous nature of UT1 until a new upload after the leap second provides an update value for Δ UT1 that is consistent with the new $\Delta t L S$.

IS :
To avoid discontinuities in UT1 across leap seconds, the value of $\Delta \mathrm{t}_{\llcorner\mathrm{L}}$ must be used in the calculation of $\mathrm{t}_{\text {utc_eop }}$ regardless of whether a leap second has occurred. This accounts for the continuous nature of UT1 until a new upload after the leap second provides an update value for $\Delta U T 1$ that is consistent with the new $\Delta \mathrm{t}_{\mathrm{L}}$.

