
Communicating Time Looks Simple.

So Why Haven’t We Solved it Yet?

Space-Based Positioning
Navigation & Time,
7-8 December, 2016

What I'm gonna say

• NTF: What, Why, Who.

• Time: From, To, Presumptions, Problems,

and a Solution.

• Moving Forward: Timestamps, GTSAPI.

• Leapseconds, error bounds, Arithmetic.

• Timescales. POSIX.

• New issues, how does this help?

• GTSAPI in context with the wider scope.

Why NTF?

• The NTP Project needed the support and

backing of a legal entity.

• I felt an “NTP Foundation” would have

insufficient scope.

• Network Time Foundation seemed “right”.

• NTF is a registered 501(c)(3) US Charity.

• Combined Federal Campaign #18136

Who/What is NTF?

• NTF currently supports NTP, Ntimed,

PTPd, LinuxPTP, RADclock and the

General Timestamp API projects.

• Expecting to implement NTS this year.

• Looking to start a “Stratum 0 Consortium.”

• Developing Certification and Compliance

programs.

NTF is all about the reliable

communication and transfer of “time”.

Time Comes From…

USNO and NIST each know what they think the

time is. They exchange time with each other and

various other National Time Labs.

This collaboration produces TAI and UTC.

GPS and other methods “publish” this time.

NTF’s work on time protocols and open-source

code “distribute” time.

Time Goes To…

NIST’s time servers get 16 billion+ requests

per day. 80% of these requests are via NTP.

Their traffic is growing at 6%/month.

NTF’s mission is the delivery of reliable time.

It is the responsibility of the “consumers” of

time to have enough time sources, and to

properly monitor them.

Presumptions

If we’re on a computer and we need to know

what time it is, we ask for a timestamp.

We simply assume the answer we get is

correct. What other choice do we have?

Do we even consider any other conditions?

And later, when we use the timestamp?

The problems…

• Clocks are better now. We can easily measure:

• earth rotation wobbles.

• the effects of relativity.

• Timestamps are often only “locally” useful, and for somewhat limited span.

• Daylight Savings Time.

• Changes to Daylight Savings Time.

• Leap Seconds.

• Northeast blackout of 2003.

• Too many clocks are not synchronized.

• Northeast blackout of 2003.

• Medical Records.

• Too many sites use an insufficient number of time sources.

• GPS signals can be jammed or spoofed.

• Radio signals can be jammed or spoofed.

• Network transmissions can be jammed/spoofed/altered.

• Current technology timestamps contain insufficient information. POSIX.

Current Timestamps

Current timestamps are mostly OK for “local

use”. Mostly.

• seconds since some epoch

• <days since epoch>,<seconds since

midnight>

• YYYYMMDD-HHMMSS - Long-standing

hospital database does not bill millions of

dollars each Fall’s daylight-savings

correction

How To Do Better

Timestamps need to contain enough

information so they can be reliably used in a

wider scope, with better longevity. To do

this, timestamps need to contain more

information.

We propose NTF’s General Timestamp API.

Timestamp Needs

• Monotonic time and databases

• System time may be known to be

undergoing a correction.

• Error bounds?

• What timescale is being used?

• When comparing TS0 and TS1 did

anything happen between those events

that would affect the comparison? Did the

clock change? Different timescales?

Timestamp Metadata

• A “clock discontinuity counter” is needed

to show where “time steps” have

occurred.

• A “host ID” is useful when comparing

timestamps between multiple systems.

• A “clock ID” is useful if we need to know

what the host is using to track the time.

About that Clock ID…

• With what degree of specificity should we

know the source of time?

Multiple choice question:

• Is 13 microseconds very much time?

26 Jan 2016 and GPS

SVN 23 was the oldest GPS satellite still in

operation on 26 Jan 2016, at the time it was being

decommissioned. During that process, the legacy

L-band signal was off by 13 μsecs from 00:49 MST

until 06:10 MST.

13 microseconds could mean a position error of

just under 4km / 2.5 miles.

More about this, later.

Timestamp Structure

• System time (or Elapsed time)

• Amount of pending correction

• Leapsecond correction (optional)

• Expected/Maximum error

• Timescale (and its revision #)

• Clock discontinuity counter

• Host and Clock ID

• Provable Signature

• Structure/API Version number, Flags

Putting it to Use

A new timestamp structure is only useful if it

can be widely and generally portable:

• Kernel support

• Library support

• Application support (NTP, SQL, etc.)

NTPv5

The NTP model expects the other

participants to play by the same rules.

Increasingly, this is not the case. With

GTSAPI, we'd at least know the timescale

the other system is using.

We'd also want to know some other

behavioral choices.

Adjusting System Time

• Forward:
• Adjust “system time”, or

• Increase “amount of pending correction”

• Backward:
• Decrease “amount of pending correction”

The OS applies pending corrections

according to its policy rules.

Adjusting System Time

• Forward time adjustments seem to be

pretty straightforward.

• Backward time adjustments are more

challenging, as monotonic time is

generally “good”.

If we want to step the time backwards, make

tiny advances to the system clock when

needed and decrease the pending

correction by 1 second per second.

Leapsecond

Timestamp Example
{System Time, Offset to Correct Time}

UTC NTP-DLM (POSIX) NTP-Windows59 NTP-Windows58 SMEAR24H

00:00:00.00 {00:00:00.00, 0} {00:00:00.00, 0} {00:00:00.00, 0} {00:00:00.00, 0}

06:00:00.00 {06:00:00.00, 0} {06:00:00.00, 0} {06:00:00.00, 0} {05:59:59.75, .25}

12:00:00.00 {12:00:00.00, 0} {12:00:00.00, 0} {12:00:00.00, 0} {11:59:59.50, .50}

18:00:00.00 {18:00:00.00, 0} {18:00:00.00, 0} {18:00:00.00, 0} {17:59:59.25, .75}

23:59:59.00 {23:59:59.00, 0} {23:59:59.00, 0} {23:59:59.00, .00} {23:59:58.00, 1}

23:59:59.50 {23:59:59.50, 0} {23:59:59.50, 0} {23:59:59.50, .25} {23:59:58.50, .5}

23.59.60.00 {23:59:59.99, .0} {23:59:59.99, .0} {23:59:59.99, .50} {23:59:59.00, .0}

23.59.60.50 {23:59:59.99, .5} {23:59:59.99, .25} {23:59:59.99, .75} {23:59:59.50, .0}

23.59.60.99 {23:59:59.99, 1} {23:59:59.99, .50} {23:59:59.99, 1} {23:59:59.99, .0}

00:00:00.00 {00:00:00.00, 0} {00:00:00.00, -.50} {00:00:00.00, 0} {00:00:00.00, 0}

00:00:00.50 {00:00:00.50, 0} {00:00:00.50, -.25} {00:00:00.50, 0} {00:00:00.50, 0}

00:00:01.00 {00:00:01.00, 0} {00:00:01.00, 0} {00:00:01.00, 0} {00:00:01.00, 0}

Using timestamps

The timestamp library API needs to handle:

• Adding/subtracting timestamps
• Must accumulate error budgets

• Canonicalization of timestamps

• Comparing timestamps

• Converting timestamps (timescales)

Timestamp Arithmetic

 TA – Absolute Timestamp

 TD – Difference Timestamp

TA - TA = TD

TA +/- TD = TA

TD +/- TD = TD

Of course, proper “accounting” of error

budgets must be maintained.

Timestamp Error

Budgets

NTP assumes that clocks accumulate error

at the rate of 15ppm.

The initial error budget for a Difference

timestamp is 0.

Otherwise, we generally care more about

the magnitude of error as opposed to the

error value.

Timescale Database

I’m operating on the belief that a timescale

database won’t be that much harder to

implement and maintain than Arthur David

Olson’s Timezone Database.

There are groups actively working on tzdata

dissemination.

Initial Timescales

Rare changes

• TAI/Satellite time (GPS, ...)

• Martian Standard Time

• UTC (leapseconds)

• Local Timezones (tzdata)

• IERS-A

Frequent changes

Should we bump the GPS version and track the

error during 26 Jan 2016?

Timescale

Identification
While it's overkill and likely way more than

we need, using the 32-bit internet network

class stuff is a useful way to start thinking

about the problem.

The “network” portion can specify the

timescale, and the “host” portion can specify

the version of the timescale.

Ongoing Questions

POSIX mostly decided upon absolute event

timers. It would be nice if we could come up

with a mechanism to notify a process that

the system time had changed so that the

application had a way to decide if it wanted

to adjust its events or not.

What about SIGWOKEUP, SIGTIMECHG?

How does this help?

Poor timekeeping and timestamps can be

incredibly costly and terribly inefficient.

• Power Grid Failure

• Hospital E/R and healthcare data

• Vehicle Fleet Tracking

Certification and

Compliance
• Being able to use a timestamp in a

“provable” setting is very helpful.

• For a timestamp to be “provable” it needs

to contain enough information to

sufficiently understand its provenance,

and know its boundaries and limits.

GTSAPI.

• The entire “time chain” for the timestamp

must be traceable and provable.

Free vs. Paid Time

Free timestamps must always be available.

Timestamps that cost money (even US$0.01

each) would be provable, traceable, and

include liability insurance. The revenue from

these would also help support Network Time

and the time infrastructure.

Summary

• NTF: What, Why, Who.

• Time: From, To, Presumptions, Problems,

and a Solution.

• Moving Forward: Timestamps, GTSAPI.

• Leapseconds, error bounds, Arithmetic.

• Timescales. POSIX.

• New issues, how does this help?

• GTSAPI in context with the wider scope.

Help NTF Help You

Visit http://nwtime.org and learn more about

these issues and Network Time Foundation.

Join NTF and invite others to join, too!

Help NTF help you!

https://youtu.be/I-BYzaDwNoE

