ygomi

Automated Driving for Trucks: Potential, Status, and Challenges

T. Russell Shields Fifteenth Meeting National Space-Based Positioning, Navigation and Timing Advisory Board June 9, 2015

Potential Effects: Safety

Highly automated driving in trucks could prevent vehicle crashes and save many lives

- 2,502 semi trucks were in fatal crashes in 2012¹
 5.5% of vehicles involved in fatal crashes¹
- 90% of commercial truck crashes are due to driver error²
 - One in eight of these crashes is due to driver fatigue²
- Like ESC³ and other vehicle control technologies, highly automated driving could substantially reduce heavy vehicle crashes
- 1. http://www-fars.nhtsa.dot.gov/Vehicles/VehiclesAllVehicles.aspx
- 2. http://www.cnet.com/news/freightliner-autonomous-inspiration-truck
- 3. http://www.nhtsa.gov/About+NHTSA/Press+Releases/2012/New+NHTSA+Report+Shows+Federal+ESC+ Requirement+Saving+Lives

Potential Effects: Environment

Highly automated driving in trucks can improve the environment

- The efficiency of automated driving can reduce fuel use and CO₂ emissions. Estimates include
 - Efficient driving: 3% reduction of fuel and CO₂¹
 - Truck platooning: 5%-10% fuel reduction^{2, 3}
 - Up to 4.8% CO₂ reduction from truck platooning⁴
- Automated driving can reduce traffic congestion
 - Americans spend an average of 38 minutes a day in traffic delays⁵
 - Automated driving enables closer following² and more efficient maneuvering, which reduce congestion

1. http://www.conti-online.com/www/automotive_de_en/themes/commercial_vehicles/ch_interior_en/ ehorizon_en/03_dynamic_ehorizon_en.html

- 2. http://atri-online.org/2015/05/27/new-research-assesses-potential-for-driver-assistive-truck-platooning
- 3. www.nrel.gov/docs/fy14osti/62494.pdf
- 4. http://orfe.princeton.edu/~alaink/SmartDrivingCars/ITFVHA13/ITFVHA13_JP_Energy_ITS_Tsugawa.pdf
- 5. http://mobility.tamu.edu/ums

ygomi

Levels of Automation

NHTSA defines five levels of automation¹

Level / Explanation	Example
Level 0: No Automation	Vehicles before 1971
 Level 1: Function-Specific Automation Driver is mostly in control of the vehicle Each automated function is separate 	Vehicle with ABS, electronic stability control, adaptive cruise control, etc., operating separately
 Level 2: Combined Function Automation Driver is mostly in control of the vehicle Automated functions work together 	A vehicle with adaptive cruise control combined with lane centering
 Level 3: Limited Self-Driving Automation Automated functions can control the vehicle Driver is present and able to take over 	
 Level 4: Full Self-Driving Automation Allows, but does not require, a driver to provide navigational input 	Vehicles used at low speeds in closed environments (mines, farms, ports, borders, etc.)

1. www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on+ Automated+Vehicle+Development Ygomi

Use of GNSS in Automated Driving

Automated driving systems use GNSS but do not currently rely on it for precise positioning

- GNSS is currently used in prototype automated vehicles on public roads (with or without an augmentation system) for gross positioning
- Currently, GNSS is inadequate for precise positioning for automated vehicles on public roads because of inaccuracy, signal loss, and jamming
 - Needs augmented GNSS with accuracy to less than 10 cm and devices with complete reliability
- In current prototype automated vehicles on public roads, precise positioning is often provided by processing sensor data (cameras, radar, lidar), with or without use of pre-existing data about the environment (map or other database)

Autonomous Heavy Vehicles

NHTSA Level 3 and 4 automated heavy vehicles are already used in closed environments

- Example uses
 - ▶ Mining¹
 - ▶ Farming²
 - ▶ Ports³
 - Border patrol⁴

- Guidance technologies
 - GNSS
 - Inertial navigation sensors
 - Digital maps
 - In-vehicle cameras, radar, lidar, other sensors
 - Markers or magnetic guides
- 1. http://www.mining.com/australias-big-miners-add-more-driverless-trucks-88704
- 2. http://farmofthefuture.net/#/slideshow/autonomous-tractors-take-field
- 3. http://www.terex.com/port-solutions/en/products/automated-guided-vehicles/index.htm
- 4. http://www.gizmodo.com.au/2014/11/the-amstaf-patrols-dangerous-borders-so-soldiers-dont-have-to

ygomi

Challenges of Highly Automated Driving in Trucks

Automated driving for trucks presents larger technical challenges than for passenger cars

- Management of a much larger, heavier vehicle
- Greater variability of weight
- Greater vehicle movement affecting sensors
- Additional road data needed
 - Height of overpasses, bridges, etc.
 - Weight, height, class limitations
- In closed or remote environments, the issues above are more easily handled
 - Mining
 - Ports

Demonstrations of Highly Automated Driving in Trucks

- Many NHTSA Level 2 automated driving features have already been implemented by truck manufacturers
 - E.g., adaptive cruise control and lane keeping
- Truck platooning on expressways has been demonstrated by Volvo and Scania¹
 - The lead vehicle is driven be a human driver
 - The following vehicles drive in automated mode following the first vehicle using a Wi-Fi connection for coordination
- Truck manufacturers have demonstrated NHTSA Level 3 automated driving in trucks
 - Daimler in Europe² and the U.S.³
 - Scania in Europe⁴
 - Peterbilt in the U.S.⁵
- 1. http://www.independent.co.uk/life-style/gadgets-and-tech/features/autonomous-vehicles-how-safe-are-trucks-without-human-drivers-9047546.html
- 2. http://www.goauto.com.au/mellor/mellor.nsf/story2/FD343BD2BA533A74CA257D0F002B26FC
- 3. http://www.informationweek.com/mobile/mobile-business/first-automated-truck-licensed-to-operate-on-public-roads/d/d-id/1320311
- 4. http://www.nltimes.nl/2015/02/10/self-driving-trucks-tested-dutch-highway
- 5. http://www.constructionequipment.com/peterbilt-demonstrates-autonomous-assist-driving

ygomi

Regulatory Status

- The 1968 Convention on Road Traffic (the "Vienna Agreement") is being updated to allow NHTSA Level 3 automated driving^{1, 2}
 - Final approval through the UN process might be completed in 2016
- UN-R 79 forbids automatic steering at speeds over 10 km/h except for corrective steering
 - UNECE WP.29 is working on a revision to allow full steering control, possibly by 2018²
 - The U.S. follows this structure by choice

1. http://safecarnews.com/un-amends-vienna-convention-on-road-traffic-to-allow-driverless-cars

2. http://www.daimler.com/dccom/0-5-1742887-1-1743264-1-0-0-1743248-0-0-135-0-0-0-0-0-0-0.html

Predictions

- There will be NHTSA Level 3 automated driving in passenger vehicles on expressways, possibly in 2020
- There will be NHTSA Level 3 automated driving in trucks on expressways, possibly by 2023
- There will also be NHTSA Level 2 and Level 3 automated vehicle control functions used on expressways and/or local roads to improve fuel economy
 - Stoplight recognition
 - Platooning
- There will be more NHTSA Level 4 automated vehicles in more closed and remote environments
 - Road trains
 - Ports
 - Manufacturing facilities

Thank You