Alternative Positioning, Navigation, and Timing (APNT)

Deborah Lawrence

Manager, Navigation Programs June 3, 2014

Federal Aviation Administration

Why Alternate PNT?

- Presidential Policy Directive 21 (PPD-21), Critical Infrastructure Security and Resilience
 - advances a national unity of effort to strengthen and maintain secure, functioning and resilient critical infrastructure
- FAA needs to maintain aviation operations in the event of a Global Navigation Satellite System (GNSS) interference event or outage
 - Maintain safety and security
 - Maintain a reasonable level of capacity and efficiency
 - Minimize economic impact
- Waiting for the source of the interference to be located and turned off is not an acceptable alternative!

What are "Disruptions"?

- For GNSS "Disruptions" = "Interference"
- GNSS Interference can be:
 - Intentional/Unintentional
 - Predictable/Unpredictable
 - Manmade/Environmental
 - Crude/Sophisticated (Jamming/Spoofing)
 - Widespread/Localized

Applies to all GNSS provided services

- Position
- Navigation
- Timing

Today's Alternate PNT

- The FAA currently relies on existing legacy systems for GPS alternative navigation which does not fully support RNAV, RNP, or TBO.
- Today's ATC system cannot simply be scaled up to handle twice the traffic
- Today's Legacy PNT services cannot support many NextGen Operational Improvements (OIs) or meet performance requirements necessary to maintain adequate capacity and efficiency
 - Continued reliance on current APNT infrastructure will significantly impact:
 - NAS capabilities and capacities
 - Pilot and controller workload
 - Economic and environmental benefits (fuel, carbon footprint, etc.)
 - Capital budget (Continuation of Current State Requires Recapitalization of VORs: a very large investment for a non-PBN solution)

Legacy Case – DDI and VOR

Alternative	Description	Strengths	Weaknesses	Risk / Rationale
	 Sustain the current DME infrastructure Sustains the VOR Network Users must equip with DME/DME/IRU to fly RNAV procedures without GNSS 	 No new MOPS/TSO/ICD required 97% of air carriers already have DDI or DD avionics Rulemaking not required Meets minimum RNAV coverage for Air Carrier Operations 	 30% of air carriers (Regional Jets) do not have IRU Accuracy limited to RNAV- 1.0 No RNP backup, RNP IFPs will be GNSS only Loss of GNSS may cause unacceptable workload for pilots and controllers as they revert to VOR and radar vectors Will require retention of additional SSRs No RNAV backup for GA 	<u>Technical -Low</u> <u>Cost – Low</u> <u>Schedule – Low</u>

Perform	nance Summary	Aircraft Equipage Capability			
RNP-0.3	ADS-B-0.05 nm	Air Carrier	Regionals & Business	General Aviation	MOPS Changes
No	No	RNAV-1.0/2.0 Backup	No PBN Backup	No PBN Backup	No

NextGen Alternate PNT

- The Alternative Positioning, Navigation, and Timing (APNT) project is investigating alternatives for providing higher precision back-up for Global Positioning System (GPS)based position, navigation, and timing (PNT) services.
- GPS PNT services are the enablers of performance-based navigation (PBN) and Automatic Dependent Surveillance Broadcast (ADS-B) services that, in turn, enable Trajectory-Based Operations (TBO), area navigation (RNAV), Required Navigation Performance (RNP), and other NextGen improvements.
- NextGen APNT will provide a means for users to seamlessly continue RNAV and RNP operations.

CONOPS Overview – Backup to GPS

The Road to APNT

The Road to APNT con't

- The development of APNT requires the identification of multiple solution sets that can serve diverse NAS users
- APNT solution sets will be comprised of ground-based infrastructure transmitting non-GNSS signals-in-space to avionics that may vary by user
- The signals-in-space must support legacy users as well as emerging user communities (e.g., UAS)
- Robustness/resilience is paramount, i.e., safety of operations must be maintained <u>and</u> operations must continue at or near nominal levels

13th National Space-based PNT Advisory Board June 2014

Benefits

NET Benefits: FAA		
Efficiency/Productivity	Yes	Sustains RNAV/RNP – TBO during GPS outages
NET Benefits: User		
Safety	Yes	Users avoid disruptions for transitions from 3nm separation to 5nm during GPS outage
Operator Cost	Yes	Avoid impacts to fuel burn during GPS outage transition
Passenger Value of Time (PVT)	Yes	Minimizes time lost during GPS outages and limits discomfort and cost people experience when traveling
Capacity	Yes	Sustains departure and arrival traffic flow to the Core 30 (minus Hawaii) airports plus the next ~*100 busiest airports in CONUS (*Depending on the business case)

Notional APNT Coverage

Note: 1,500 foot AGL floor covers arrivals while the 500 foot AGL floor is for departures. The departure coverage starts at 2.5 nm from the runway end and extends upward to cover the climb out and may not be a conical surface around the airport.

Initial Alternatives Evaluated

- Time-difference of arrival (TDOA) of a signal between several known and carefully surveyed observation points
- Uses TIS-B as a data link for navigation
- Precise synchronization of the ground stations

- Leverages Existing DME/DME Technology
- RNAV Today; Impacts to Avionics to realize RNP
- Evaluating means to support both IRU and non-IRU aircraft

- New Concept
- Leverages DME/GBT Infrastructure
- Provides precise time to aircraft
- Impact to Avionics

Hybrid APNT Includes DME (two way ranging)

13th National Space-based PNT Advisory Board June 2014

Hybrid APNT Includes GBTs (one way ranging)

13th National Space-based PNT Advisory Board June 2014

Decision Tree

Enhanced DME (eDME)

Alternative	Description	Strengths	Weaknesses	Risk / Rationale
Enhanced DME Network (DME-DME)	 Modify DME facilities to enable RNP with Monitoring & Alerting Modify DME facilities to Improve ranging accuracy to achieve RNP-0.3 Modify DME avionics to enable Monitoring & Alerting and improved accuracy Assumes NextGen DME will eliminate critical facilities and fill coverage gaps for DD- only users 	 Air carriers are equipped with DDI MOPS/TSO already exist (RTCA/SC- 227) Global Air Navigation Plan compatible 	 MOPS Changes will be needed to enable RNP accuracy and monitoring & alerting RTCA/SC-227 does not support GA does not have DME Performance may be limited to RNAV-0.6 at best. Does not meet ADS-B positioning requirements (SSRs still needed) Will need to retain more VORs 	 <u>Technical - High</u> Enabling RNP Monitoring & Alerting - High Risk RNP-0.3 accuracy - High Risk <u>Cost - Medium</u> Aircraft - High GND system - Low <u>Schedule - Medium</u> Aircraft - High GND System - Low

Performance Summary		Aircraft Equipage			
RNP-0.3	ADS-B 0.05 NM	Air Carrier	Regionals & Business	Genaral Aviation	MOPS Changes
TBD	No	RNP-0.3 Backup	RNP-0.3 Backup	No PBN Backup	Yes

13th National Space-based PNT Advisory Board

June 2014

Hybrid Ranging

Alternative	Description	Strengths	Weaknesses	Risk / Rationale
И И И И И И И И И И И И И И И И И И И	 Modify DMEs to add a pseudolite ranging signal Modify ADS-B RTs to enable 1090/UAT ranging New Avionics to compute position solution Provide backup positioning for PBN and ADS-B Assumes NextGen DME will eliminate critical DMEs and fill coverage gaps. 	 Achieves the accuracy required for RNP-0.3 Provides RNP Monitoring & Alerting Signal and site diversity 	 Requires new MOPS/TSO/ICD No user equipage base Long term solution Most costly alternative 	 Technical -Medium Achieving RNP Monitoring & Alerting – Medium Risk Meeting accuracy for RNP-0.3 – Low Risk User acceptance – Medium Risk Cost – High Schedule - High

Perform	ance Summary	Aircraft Equipage Capability			
RNP-0.3	ADS-B 0.05 NM	Air Carrier	Regionals & Business	General Aviation	MOPS Changes
Yes	Yes	RNP-0.3 Backup	RNP-0.3 Backup	RNP-0.3 Backup	Yes

Nominal APNT Development Activities

Summary

GNSS is vulnerable!

- Today's status quo may not be an acceptable alternative in the future as GNSS services continue to proliferate and support more and more critical operations
- There are robust and resilient alternatives but there is a need to identify and incorporate them into operations that ensure safety and security and to mitigate significant economic impact
- NextGen is addressing the need for robust and resilient alternative position, navigation, and timing services

Questions

13th National Space-based PNT Advisory Board June 2014

Back Up

13th National Space-based PNT Advisory Board June 2014

Legacy Infrastructure Description

VOR MON ~ 500 VORs

- 30 to 40 years old

DME Service

- DME ~400
 - 30 to 40 years old
- TACAN ~537
 - 40 to 50 years old
- Aging infrastructure will require sustainment activities
 - Technical refresh required

Legacy Case

	Capabilities		Navigation Enablers	
Description	Current	Primary	GNSS Backup	
Class A Airspace FL180-FL600 (with gaps)	VOR Airways Q/T Routes (RNAV-2.0)	GNSS or VOR	70 % of air carriers can use DDI for en route above FL240 and terminal	
Class B - 36 Airports 1000' AGL up to 10,000 AGL	Conventional SID/STAR RNAV SID/STAR (RNAV-	GNSS	All others revert to VOR/DME for en	
Class C – ~99 Civil Airports 1000' AGL up to 4000 AGL	RNAV Approach Conventional Approach	VOR/ILS	VOR/DME/ILS for approach & landing	
Class E Airspace 5000 AGL up to FL180	VOR Airways Q/T Routes (RNAV-2.0)	GNSS or VOR	VOR navigation for en route & terminal VOR/ILS for approach & landing	

13th National Space-based PNT Advisory Board

June 2014

Combined Network of DMEs and GBTs

13th National Space-based PNT Advisory Board

June 2014

