

GPS Network Timing Integrity

Malcolm J Airst, Senior Principal Engineer MITRE Corporation, 619-318-3837 mairst@mitre.org

The Problem

- Modern communications networks depend on GPS-derived time and frequency reference signals
- Our reliance on GPS and its global nature also make it a target for denial/interference by adversaries and even hobbyists
- Advanced spoofing—re-creating valid signals but adding a time delay—is a greater threat than jamming
 - When jammed we can take simple counter-measures; advanced spoofing is invisible to the user
- Industry/academia have demonstrated a low-cost (<\$2k) spoofer using commercially available parts</p>
 - Mitigations exist but customer demand is lacking
 - Detailed techniques, components and software required to construct a GPS Spoofer are now widely available via the public domain (a recent Google search returned almost 500,000 hits)
- Effects of jammed and spoofed signals can be significant
 - Can disable radios, provide incorrect time stamp to stock trades, etc
 - Create positioning errors resulting in the user erroneously believing he is somewhere where he is not

GPS a Victim of Its Own Success

- Ubiquity of GPS makes it the primary source of PNT/F information to all users
 - Provides a free service to all GPS users
 - For positioning/navigation information
 - For precision time, frequency and phase information
- The reliance on GPS, its global nature, and the information advantage we derive from PNT/F makes GPS an ideal target for attack – many users unaware of threats
 - Adversary threats
 - Ground, air, and space based
 - EW, advanced and persistent cyber bad guys
 - Insider vulnerabilities
 - Networked receivers present cyber attack challenge
- Threat has expanded from nation-state to informed hobbyist

We have an Asymmetric Vulnerability as a result of our dependence

GPS Time/Frequency Server Operation

Typical Point-of-Presence Time and Frequency CAPS Signals 1 pps (pulse/second) to frequency hopping radios

 NTP and Device Management (Ethernet)
 1.544 MHz for telephony (to PBX)

 • NTP for C4ISR track and event time tagging, common time distribution
 1,5 or 10 MHz Reference (to SONET/DWDM Equipment)

Symmetricom XIi GPS-Disciplined Rubidium Shown

GPS System Vulnerabilities*

- Unintentional Interference
 - Radio Frequency Interference (RFI)
 - GPS Testing
 - Ionospheric; Solar Max
 - Spectrum Congestion
- Intentional Interference
 - Jamming
 - Spoofing Counterfeit Signals
 - System Damage

Human Factors

- User Equipment & GPS SV Design Errors
- Over-Reliance
- Lack of Knowledge/Training

Factors Impacting GPS Vulnerability*

- Very Low Signal Power
- Single Civil Frequency
 - Known Signal Structure
- Spectrum Competition
- Worldwide Military Applications Drive a GPS Disruption Industry
 - Jamming Techniques are Well Known
 - Devices Available, or Can be Built Easily

Disruption Mechanisms – Jamming*

Jamming Power Required at GPS Antenna

- On order of a Picowatt (10⁻¹² watt)
- Many Jammer Models Exist
 - Watt to MWatt Output Worldwide Militaries
 - Lower Power (<100 watts); "Hams" Can Make
- Jamming Signal Types
 - Narrowband
 - Broadband
 - Spread Spectrum PRN Modulation

Intentional Jamming*

- North Korean jammers exist, based on technology from the Iraq war 2003
- There are credible reports that China created jammers in 2007
- Domestic US jammers have been sold in order to disable potential vehicle tracking
- Techniques are available for a receiver to detect if it's being jammed

Disruption Mechanisms -Spoofing/Meaconing*

Spoof – Counterfeit GPS Signal

- C/A Code Short and Well Known
- Widely Available Signal Generators
- Meaconing Delay & Rebroadcast

Possible Effects

MITRF

- Long Range Jamming
- Injection of Misleading PVT Information

No "Off-the-Shelf" Mitigation

© 2010 The MITRE Corporation. All rights reserved

CAST 5000

Pendulum GSG-55

Civil GPS Spoofing Threat Continuum*

MITRE

* Courtesy of Coherent Navigation, Inc

Untraditional Target: Financial Sector*

- The New York Stock Exchange and the Nasdaq have large data centers that hold the exchanges' matching engines -- the modern-day equivalent of the historic trading floor -- in racks of interconnected servers.
- DHS (Department of Homeland Security) considers these data centers part of the national critical infrastructure
 - Private security personnel, tall fences, and the best network security money can buy protect the integrity of the thousands of high-stakes trades executed every second within these data centers.
- The NTP (Network Time Protocol) port that the network firewalls is unprotected
- An unassuming set of antennas on the data center's roof carry unsecured civil GPS signals directly into the core of the matching engine network
- Slaved to a once-per-second synchronization pulse from a GPS-locked timing card, the individual servers in the network apply time stamps to the trades they execute
- Far less accurately, many trading houses are obtaining time from Sprint or Verizon cellular networks, which then obtain time from civil GPS
- A decade ago, a tenth of a second was an acceptable time stamp resolution
- High frequency traders now demand nanoseconds (billions of a second)

GPS Spoofing Wall Street*

• A GPS Time attack could possibly manipulate trading

* Courtesy of Dr. Todd Humphries, University of Texas at Austin

Selected Protocol Interface Tolerances

Interface Type	Time Tolerance	Frequency Tolerance	Notes
Serial	n/a	0.01 %	12.8 Hz at 128 kbps
SONET	4.6 µsec/sec	4.6 Hz per MHz	46 Hz on 10 MHz frequency reference, 715 Hz for OC-3
IP	n/a	n/a	Asynchronous
Ethernet	25 µsec	50 ppm	5 kHz for 1 GbE
NTP	n/a	n/a	Application specific, inaccuracy increases proportional to distance from the server
CDMA	+/- 3 µsec	n/a	With respect to UTC

SONET Timing Specification Limits

- Maximum SONET time or frequency variation is 4.6 ppm (parts per million), or <u>46 Hz on the 10 MHz frequency</u> <u>reference</u> feed from the GPS receiver to the SONET add/drop multiplexer (ADM) and associated equipment
- 4.6 ppm translates to 4.6 Hz per MHz or 4.6 µsec/sec of time offset

OC-X	Maximum Frequency Offset*
3 (155.52 MHz)	715 Hz
12 (622.08 MHz)	2.861 kHz
48 (2.488 GHz)	11.446 kHz
192 (9.953 GHz)	45.760 kHz

NTP Derived via GPS

- GPS receivers (Symmetricom or FEI-Zeifer) are deployed at sites to provide "time-of-day" or Network Time Protocol (NTP) services where required/requested
 - NTP is an Internet Protocol (IETF RFC-1305) used to synchronize the clocks of computers (and often routers as well to some type of time reference)
- Typical NTP accuracy (derived from USNO or NIST) is within 10-20 msec of UTC (CONUS)/ 100+ MSEC (OCONUS over fiber due to propagation delays)
- If greater accuracy is desired, then a local GPS receiver is required to provide a local NTP source
- NTP accuracy requirements are determined by the way NTP is used
- NTP is very inaccurate (typically + 2 seconds of UTC) when obtained via the Internet

GPS Spoofing Detection / Mitigation

- Civilian GPS signals are without authentication or encryption, making detection and mitigation more difficult
- Most mitigations involve integrity checking via multiple clocks, user-supplied position, and RF signal anomalies
- Recommend vendors add integrity checking to time/frequency servers
- Receivers should detect signal anomalies such as
- Wrong time (compared to reference clock)
- Suspiciously low noise
- Excessive signal strength
- Artificial spacing of signals
- Limited short term jitter or variation in signal strength
- All satellites have the same signal strength
- High level sanity checks (e.g., no large position discontinuities)

Potential Augmentations to GPS

Time	Today	Near Term	Far Term
National	GPS	GPS/IEEE- 1588	LF/Multiple GNSS/IEEE-1588
Deployable	GPS/Atomic Clocks	GPS/Atomic Clocks/ Multi-sensor integration/3G-4G Cellular	LF/GNSS/ Multi-sensor integration/ Signals of opportunity
Worldwide	GPS	GPS/IEEE- 1588/DTV	LF/IEEE-1588/Multi GNSS

Recommended Mitigations

- Immediate migration to NTPv4, to add authentication and other enhancements to mitigate NTP cyber threat
- Critical timing subsystems, especially those used in major communications nodes should detect and mitigate GPS jamming and spoofing via multiple means
 - Integrity checking via multiple atomic clocks and multi-sensor fusion
 - Detect and mitigate rate of clock walk-off via advanced disciplining algorithms
 - Employ user-provided position information as additional integrity check
- Employ available Chip Scale Atomic Clock (CSAC) for mobile or SWAP (Size, Weight and Power)-constrained applications
 - Use CSAC as additional integrity check
- Disseminate precision time and frequency from critical nodes to other platforms via IEEE 1588v2