

Geodetic Reference Antenna in Space (GRASP):

A Mission to Enhance GNSS and the Terrestrial Reference Frame

Yoaz Bar-Sever, Willy Bertiger, Shailen Desai, Richard Gross, Bruce Haines, Sien Wu, JPL

Steve Nerem, University of Colorado, Boulder

GRASP Mission Goals

With thousands of tracking sites globally, GNSS is the primary technique for *densifying, transferring, and accessing* the Terrestrial Reference Frame (TRF)

The GRASP mission concept is designed to address the following problems:

- Establishing precise and stable ties between the geodetic techniques used to define and disseminate the TRF
- Consistently calibrate the myriad antennas used to transmit and receive GNSS signals, in ground and space applications
- Enhance the contribution of GNSS to the TRF, and further improve the accuracy and stability of the TRF
- Improve the overall accuracy of GNSS orbit and clock states, benefiting all precision GNSS applications
- And more...

Ice Loss

Gravity Field Changes

The TRF is currently determined by 4 space-ground geodetic techniques: SLR, VLBI, GPS/GNSS, and DORIS

TRF accuracy and stability currently limited by inter-technique ties, and GNSS antenna phase center uncertainties

Sea Level Rise

Venture EV-2

The TRF is a significant Error Source in Measuring and Understanding Changes in the Earth System

Is sea level accelerating?

Impact of TRF Error on Global Mean Sea Level (GMSL) Record from Spaceborne Altimetry:²

Altimeter Global Mean Sea Level Measurement Error Budget		
Glacial isostatic adjustment (affects volume of ocean basins)	0.1 mm/y	
Altimeter drift error (predominantly radiometer drift)	0.4 mm/y	RSS = 0.45 mm/yr
Altimeter bias errors (the ability to link overlapping missions)	0.4 mm/y	
Reference frame origin error (affects the satellite orbits)	0.2 mm/y	
Systematic vertical motion error (affects the altimeter calibration)	0.4 mm/y	

Total error (root-sum-squared)

0.6 mm/y

Impact of TRF on GMSL Record from Tide Gauges: competing approaches for TRF realization yield estimates for sea-level rise ranging from 1.2 to 1.6 mm/yr.³

Desired accuracy for measuring global mean sea level (GMSL) rise is 0.1 mm/yr.¹

Cazenave *et al.*, "Sea Level Rise – Regional and Global Trends", Oceanobs 2009 Plenary Paper, Venice, September 2009.
 NRC report on Precise Geodetic Infrastructure (2010)
 Collilieux, X., and G. Wöppelmann, Global sea-level rise and its relation to the terrestrial reference frame, *J. Geod.* 85:9–22₄2011.

Estimation of GPS transmit APV from ground observations is problematic:

- Sensitivity to tropospheric delay biases
- High correlation with receiver APV, which are uncertain due to local multipath and diversity of hardware
 - Robot- or anechoic chamber-based antenna calibrations do not capture the conditions in-situ
 - High likelihood of global systematic error because of common monument types
- Dependent on the TRF; IGS selected antenna offset to maintain the TRF Scale
- Narrow field of view limits utility for space applications

GRACE: GRASP Concept Experiment

GRACE spacecraft (500 km orbit)

GRACE GPS antenna phase (receive)

- GRACE acted as the GRASP
 pathfinder mission
- A priori GRACE antenna model from pre-launch anechoic measurements
- GPS transmit Antenna map estimated iteratively
- Scale is derived from GM
- Estimates for all PRNs flying Oct. 2006–Nov. 2009
- Includes group delay (Ionospherefree pseudorange, PC)
- Proof of concept well demonstrated
- But, GRASP is much better suited to this measurement than GRACE:
 - Center of Mass to mm level
 - Better calibrated, and includes PC
 - 1,400 km orbit height (same as altimetry missions: T/P, J-1,2,3)

PNT Advisory Board, June 2011

GPS spacecraft (20,000 km orbit)

GPS spacecraft antenna phase (transmit) [from GRACE data]

Venture EV-2

GRASP Spacecraft Concept

- Collocate all the geodetic techniques on one spacecraft
- Ground calibrate all sensors to sub-mm
- Design spacecraft and orbit to facilitate sub-mm POD

- The spacecraft is a flying geodetic super-site:
 - Enables the realization of the TRF with 1 mm accuracy and 0.1 mm/year stability as specified by GGOS
 - Improves the measurement of sea level change and ice/water mass changes being made by satellite altimeter and satellite gravity missions respectively.
 - Essentially an orbiting "measurement lab" that combines the most important geodetic measurements on a single spacecraft.
 - Will complement data being collected by Jason-2/3 and GRACE Follow On.
 - Enhance the global geodetic infrastructure through improved inter-technique ties
- Many of the benefits of GRASP can be extended retroactively to improve the entire ~20 year altimetric sea level record and the decade-long satellite gravity record. Likewise, future altimeter and gravity measurements will benefit from GRASP as well.
- GRASP will enhance the accuracy of precision GNSS applications
- GRASP will promote interoperability of GNSS by providing a common reference

Absolute reference antenna for consistent calibration of all GNSS antennas, ground and space

- Factor of 3.5 improvement is determination of GPS antenna radial offset with GPS data alone; factor of 8 improvement with SLR data
- GNSS satellite APV sampling fully consistent with high LEO missions, such as Jason, and will improve GNSS-based orbit determination of LEOs

Factor of 3 improvement in GPS POD

Factor of 10 improvement in Geocenter determination with GPS data alone

Enhances GNSS contributions to the TRF through geocenter and scale (GNSS-based scale determination not shown here)

• Factor of 10 improvement in Geocenter determination with GPS data alone

Strong Scientific Community Support for GRASP as an Innovative Solution to a Critical Problem

Decadal Survey statement about the geodetic infrastructure: "provides the foundation for virtually all space-based and ground-based observations in Earth science and global change, ... It is through this reference frame that all measurements can be interrelated for robust, long-term monitoring of global change."

NRC Committee on geodetic infrastructure: "Although terrestrial techniques might be limited by the uncertainty of measuring instruments' internal offsets, dedicated space missions could provide a prime opportunity for future innovation in this domain. One such space mission currently being proposed by NASA's Jet Propulsion Laboratory (JPL) is GRASP"

- NASA draft Venture AO released (on time) in February 2011
 - \$150M cap, Earth-science focused mission
- Final AO release due June 17, proposals due 3 months later
- Passed JPL Ventures review in March, 2011; now in full mission proposal mode
 - PI: Prof. Steve Nerem, University of Colorado, Boulder
 - Targeted launch: 2016/2017; 3 years in orbit
- This is a mission by and for the geodetic community all data will be available to the public immediately
- Secured broad endorsements from the geodetic community: GGOS, IGS, ILRS, IDS, and IVS
- GRASP is a dual-use mission seeking DoD endorsements and support
 - Secured endorsements from GPS Directorate and USNO